clray

annotate rt.cl @ 16:9e4a28063394

cl compiler segfaults...
author John Tsiombikas <nuclear@member.fsf.org>
date Mon, 09 Aug 2010 04:18:21 +0100
parents 754faf15ba36
children 074a64b9d6bd
rev   line source
nuclear@12 1 /* vim: set ft=opencl:ts=4:sw=4 */
nuclear@12 2
nuclear@2 3 struct RendInfo {
nuclear@2 4 int xsz, ysz;
nuclear@9 5 int num_faces, num_lights;
nuclear@2 6 int max_iter;
nuclear@16 7 float4 ambient;
John@15 8 int dbg;
nuclear@2 9 };
nuclear@2 10
nuclear@9 11 struct Vertex {
nuclear@2 12 float4 pos;
nuclear@9 13 float4 normal;
nuclear@12 14 float4 tex;
nuclear@12 15 float4 padding;
nuclear@9 16 };
nuclear@9 17
nuclear@9 18 struct Face {
nuclear@9 19 struct Vertex v[3];
nuclear@9 20 float4 normal;
nuclear@9 21 int matid;
nuclear@12 22 int padding[3];
nuclear@9 23 };
nuclear@9 24
nuclear@9 25 struct Material {
nuclear@5 26 float4 kd, ks;
nuclear@9 27 float kr, kt;
nuclear@9 28 float spow;
nuclear@12 29 float padding;
nuclear@2 30 };
nuclear@2 31
nuclear@3 32 struct Light {
nuclear@3 33 float4 pos, color;
nuclear@3 34 };
nuclear@3 35
nuclear@2 36 struct Ray {
nuclear@2 37 float4 origin, dir;
nuclear@16 38 float energy, pad[3];
nuclear@2 39 };
nuclear@2 40
nuclear@2 41 struct SurfPoint {
nuclear@2 42 float t;
nuclear@12 43 float4 pos, norm, dbg;
nuclear@9 44 global const struct Face *obj;
nuclear@9 45 global const struct Material *mat;
nuclear@2 46 };
nuclear@2 47
nuclear@16 48 struct Scene {
nuclear@16 49 float4 ambient;
nuclear@16 50 global const struct Face *faces;
nuclear@16 51 int num_faces;
nuclear@16 52 global const struct Light *lights;
nuclear@16 53 int num_lights;
nuclear@16 54 global const struct Material *matlib;
nuclear@16 55 };
nuclear@2 56
nuclear@16 57 #define MIN_ENERGY 0.001
nuclear@16 58 #define EPSILON 1e-6
nuclear@16 59
nuclear@16 60 float4 trace(struct Ray ray, struct Scene *scn);
nuclear@16 61 float4 shade(struct Ray ray, struct Scene *scn, const struct SurfPoint *sp);
nuclear@16 62 bool find_intersection(struct Ray ray, const struct Scene *scn, struct SurfPoint *sp);
nuclear@9 63 bool intersect(struct Ray ray, global const struct Face *face, struct SurfPoint *sp);
nuclear@16 64
nuclear@8 65 float4 reflect(float4 v, float4 n);
nuclear@8 66 float4 transform(float4 v, global const float *xform);
nuclear@16 67 void transform_ray(struct Ray *ray, global const float *xform, global const float *invtrans);
nuclear@12 68 float4 calc_bary(float4 pt, global const struct Face *face, float4 norm);
nuclear@4 69
nuclear@4 70 kernel void render(global float4 *fb,
nuclear@4 71 global const struct RendInfo *rinf,
nuclear@9 72 global const struct Face *faces,
nuclear@9 73 global const struct Material *matlib,
nuclear@4 74 global const struct Light *lights,
nuclear@7 75 global const struct Ray *primrays,
nuclear@12 76 global const float *xform,
John@15 77 global const float *invtrans,
John@15 78 global struct Face *outfaces)
nuclear@2 79 {
nuclear@2 80 int idx = get_global_id(0);
nuclear@2 81
nuclear@16 82 struct Scene scn;
nuclear@16 83 scn.ambient = rinf->ambient;
nuclear@16 84 scn.faces = faces;
nuclear@16 85 scn.num_faces = rinf->num_faces;
nuclear@16 86 scn.lights = lights;
nuclear@16 87 scn.num_lights = rinf->num_lights;
nuclear@16 88 scn.matlib = matlib;
nuclear@8 89
nuclear@16 90 struct Ray ray = primrays[idx];
nuclear@16 91 transform_ray(&ray, xform, invtrans);
nuclear@4 92
nuclear@16 93 fb[idx] = trace(ray, &scn);
nuclear@4 94 }
nuclear@4 95
nuclear@16 96 float4 trace(struct Ray ray, struct Scene *scn)
nuclear@4 97 {
nuclear@16 98 float4 color;
nuclear@16 99 struct SurfPoint sp;
nuclear@16 100
nuclear@16 101 if(find_intersection(ray, scn, &sp)) {
nuclear@16 102 color = shade(ray, scn, &sp);
nuclear@16 103 } else {
nuclear@16 104 color = (float4)(0, 0, 0, 0);
nuclear@16 105 }
nuclear@16 106 return color;
nuclear@16 107 }
nuclear@16 108
nuclear@16 109 float4 shade(struct Ray ray, struct Scene *scn, const struct SurfPoint *sp)
nuclear@16 110 {
nuclear@16 111 float4 norm = sp->norm;
nuclear@12 112 bool entering = true;
nuclear@16 113 struct Material mat = *sp->mat;
nuclear@12 114
nuclear@12 115 if(dot(ray.dir, norm) >= 0.0) {
nuclear@12 116 norm = -norm;
nuclear@12 117 entering = false;
nuclear@12 118 }
nuclear@12 119
nuclear@16 120 float4 dcol = scn->ambient * mat.kd;
nuclear@8 121 float4 scol = (float4)(0, 0, 0, 0);
nuclear@5 122
nuclear@16 123 for(int i=0; i<scn->num_lights; i++) {
nuclear@16 124 float4 ldir = scn->lights[i].pos - sp->pos;
nuclear@5 125
nuclear@16 126 struct Ray shadowray;
nuclear@16 127 shadowray.origin = sp->pos;
nuclear@16 128 shadowray.dir = ldir;
nuclear@5 129
nuclear@16 130 if(!find_intersection(shadowray, scn, 0)) {
nuclear@16 131 ldir = normalize(ldir);
nuclear@16 132 float4 vdir = -normalize(ray.dir);
nuclear@16 133 float4 vref = reflect(vdir, norm);
nuclear@16 134
nuclear@16 135 float diff = fmax(dot(ldir, norm), 0.0f);
nuclear@16 136 dcol += mat.kd * diff * scn->lights[i].color;
nuclear@16 137
nuclear@16 138 //float spec = powr(fmax(dot(ldir, vref), 0.0f), mat.spow);
nuclear@16 139 //scol += mat.ks * spec * scn->lights[i].color;
nuclear@16 140 }
nuclear@16 141 }
nuclear@16 142
nuclear@16 143 float4 refl_col = mat.ks * mat.kr;
nuclear@16 144 float refl_coeff = (refl_col.x + refl_col.y + refl_col.z) / 3.0;
nuclear@16 145
nuclear@16 146 if(refl_coeff > MIN_ENERGY) {
nuclear@16 147 struct Ray refl_ray;
nuclear@16 148 refl_ray.origin = sp->pos;
nuclear@16 149 refl_ray.dir = reflect(-ray.dir, norm);
nuclear@16 150 refl_ray.energy *= refl_coeff;
nuclear@16 151
nuclear@16 152 scol += trace(refl_ray, scn) * refl_col;
nuclear@5 153 }
nuclear@5 154
nuclear@8 155 return dcol + scol;
nuclear@2 156 }
nuclear@2 157
nuclear@16 158
nuclear@16 159 bool find_intersection(struct Ray ray, const struct Scene *scn, struct SurfPoint *spres)
nuclear@12 160 {
nuclear@16 161 struct SurfPoint sp, sp0;
nuclear@16 162 sp0.t = 1.0;
nuclear@16 163 sp0.obj = 0;
nuclear@16 164
nuclear@16 165 for(int i=0; i<scn->num_faces; i++) {
nuclear@16 166 if(intersect(ray, scn->faces + i, &sp) && sp.t < sp0.t) {
nuclear@16 167 sp0 = sp;
nuclear@16 168 }
nuclear@16 169 }
nuclear@16 170
nuclear@16 171 if(!sp0.obj) {
nuclear@16 172 return false;
nuclear@16 173 }
nuclear@16 174
nuclear@16 175 if(spres) {
nuclear@16 176 *spres = sp0;
nuclear@16 177 spres->mat = scn->matlib + sp0.obj->matid;
nuclear@16 178 }
nuclear@16 179 return true;
nuclear@12 180 }
nuclear@12 181
nuclear@16 182 bool intersect(struct Ray ray, global const struct Face *face, struct SurfPoint *sp)
nuclear@2 183 {
nuclear@12 184 float4 origin = ray.origin;
nuclear@12 185 float4 dir = ray.dir;
nuclear@12 186 float4 norm = face->normal;
nuclear@12 187
nuclear@16 188 float ndotdir = dot(dir, norm);
nuclear@12 189
nuclear@9 190 if(fabs(ndotdir) <= EPSILON) {
nuclear@9 191 return false;
nuclear@9 192 }
nuclear@2 193
nuclear@9 194 float4 pt = face->v[0].pos;
nuclear@12 195 float4 vec = pt - origin;
nuclear@2 196
nuclear@16 197 float ndotvec = dot(norm, vec);
nuclear@9 198 float t = ndotvec / ndotdir;
nuclear@2 199
nuclear@2 200 if(t < EPSILON || t > 1.0) {
nuclear@2 201 return false;
nuclear@2 202 }
nuclear@12 203 pt = origin + dir * t;
nuclear@9 204
nuclear@12 205
nuclear@12 206 float4 bc = calc_bary(pt, face, norm);
nuclear@9 207 float bc_sum = bc.x + bc.y + bc.z;
nuclear@9 208
nuclear@12 209 if(bc_sum < 0.0 || bc_sum > 1.0 + EPSILON) {
nuclear@9 210 return false;
nuclear@12 211 bc *= 1.2;
nuclear@9 212 }
nuclear@2 213
nuclear@2 214 sp->t = t;
nuclear@9 215 sp->pos = pt;
nuclear@12 216 sp->norm = norm;
nuclear@9 217 sp->obj = face;
nuclear@12 218 sp->dbg = bc;
nuclear@2 219 return true;
nuclear@2 220 }
nuclear@5 221
nuclear@8 222 float4 reflect(float4 v, float4 n)
nuclear@5 223 {
nuclear@12 224 float4 res = 2.0f * dot(v, n) * n - v;
nuclear@12 225 return res;
nuclear@5 226 }
nuclear@8 227
nuclear@8 228 float4 transform(float4 v, global const float *xform)
nuclear@8 229 {
nuclear@8 230 float4 res;
nuclear@8 231 res.x = v.x * xform[0] + v.y * xform[4] + v.z * xform[8] + xform[12];
nuclear@8 232 res.y = v.x * xform[1] + v.y * xform[5] + v.z * xform[9] + xform[13];
nuclear@8 233 res.z = v.x * xform[2] + v.y * xform[6] + v.z * xform[10] + xform[14];
nuclear@12 234 res.w = 0.0;
nuclear@8 235 return res;
nuclear@8 236 }
nuclear@8 237
nuclear@16 238 void transform_ray(struct Ray *ray, global const float *xform, global const float *invtrans)
nuclear@8 239 {
nuclear@16 240 ray->origin = transform(ray->origin, xform);
nuclear@16 241 ray->dir = transform(ray->dir, invtrans);
nuclear@8 242 }
nuclear@9 243
nuclear@12 244 float4 calc_bary(float4 pt, global const struct Face *face, float4 norm)
nuclear@9 245 {
nuclear@12 246 float4 bc = (float4)(0, 0, 0, 0);
nuclear@9 247
nuclear@12 248 // calculate area of the whole triangle
nuclear@12 249 float4 v1 = face->v[1].pos - face->v[0].pos;
nuclear@12 250 float4 v2 = face->v[2].pos - face->v[0].pos;
nuclear@12 251 float4 xv1v2 = cross(v1, v2);
nuclear@12 252
nuclear@16 253 float area = fabs(dot(xv1v2, norm)) * 0.5;
nuclear@9 254 if(area < EPSILON) {
nuclear@9 255 return bc;
nuclear@9 256 }
nuclear@9 257
nuclear@9 258 float4 pv0 = face->v[0].pos - pt;
nuclear@9 259 float4 pv1 = face->v[1].pos - pt;
nuclear@9 260 float4 pv2 = face->v[2].pos - pt;
nuclear@9 261
nuclear@12 262 // calculate the area of each sub-triangle
nuclear@12 263 float4 x12 = cross(pv1, pv2);
nuclear@12 264 float4 x20 = cross(pv2, pv0);
nuclear@12 265 float4 x01 = cross(pv0, pv1);
nuclear@12 266
nuclear@16 267 float a0 = fabs(dot(x12, norm)) * 0.5;
nuclear@16 268 float a1 = fabs(dot(x20, norm)) * 0.5;
nuclear@16 269 float a2 = fabs(dot(x01, norm)) * 0.5;
nuclear@9 270
nuclear@9 271 bc.x = a0 / area;
nuclear@9 272 bc.y = a1 / area;
nuclear@9 273 bc.z = a2 / area;
nuclear@9 274 return bc;
nuclear@9 275 }