rev |
line source |
nuclear@12
|
1 /* vim: set ft=opencl:ts=4:sw=4 */
|
nuclear@12
|
2
|
nuclear@2
|
3 struct RendInfo {
|
nuclear@2
|
4 int xsz, ysz;
|
nuclear@9
|
5 int num_faces, num_lights;
|
nuclear@2
|
6 int max_iter;
|
nuclear@16
|
7 float4 ambient;
|
nuclear@2
|
8 };
|
nuclear@2
|
9
|
nuclear@9
|
10 struct Vertex {
|
nuclear@2
|
11 float4 pos;
|
nuclear@9
|
12 float4 normal;
|
nuclear@12
|
13 float4 tex;
|
nuclear@12
|
14 float4 padding;
|
nuclear@9
|
15 };
|
nuclear@9
|
16
|
nuclear@9
|
17 struct Face {
|
nuclear@9
|
18 struct Vertex v[3];
|
nuclear@9
|
19 float4 normal;
|
nuclear@9
|
20 int matid;
|
nuclear@12
|
21 int padding[3];
|
nuclear@9
|
22 };
|
nuclear@9
|
23
|
nuclear@9
|
24 struct Material {
|
nuclear@5
|
25 float4 kd, ks;
|
nuclear@9
|
26 float kr, kt;
|
nuclear@9
|
27 float spow;
|
nuclear@12
|
28 float padding;
|
nuclear@2
|
29 };
|
nuclear@2
|
30
|
nuclear@3
|
31 struct Light {
|
nuclear@3
|
32 float4 pos, color;
|
nuclear@3
|
33 };
|
nuclear@3
|
34
|
nuclear@2
|
35 struct Ray {
|
nuclear@2
|
36 float4 origin, dir;
|
nuclear@2
|
37 };
|
nuclear@2
|
38
|
nuclear@2
|
39 struct SurfPoint {
|
nuclear@2
|
40 float t;
|
nuclear@12
|
41 float4 pos, norm, dbg;
|
nuclear@9
|
42 global const struct Face *obj;
|
nuclear@19
|
43 struct Material mat;
|
nuclear@2
|
44 };
|
nuclear@2
|
45
|
nuclear@16
|
46 struct Scene {
|
nuclear@16
|
47 float4 ambient;
|
nuclear@16
|
48 global const struct Face *faces;
|
nuclear@16
|
49 int num_faces;
|
nuclear@16
|
50 global const struct Light *lights;
|
nuclear@16
|
51 int num_lights;
|
nuclear@16
|
52 global const struct Material *matlib;
|
nuclear@16
|
53 };
|
nuclear@2
|
54
|
nuclear@16
|
55 #define MIN_ENERGY 0.001
|
nuclear@16
|
56 #define EPSILON 1e-6
|
nuclear@16
|
57
|
nuclear@16
|
58 float4 shade(struct Ray ray, struct Scene *scn, const struct SurfPoint *sp);
|
nuclear@16
|
59 bool find_intersection(struct Ray ray, const struct Scene *scn, struct SurfPoint *sp);
|
nuclear@9
|
60 bool intersect(struct Ray ray, global const struct Face *face, struct SurfPoint *sp);
|
nuclear@16
|
61
|
nuclear@8
|
62 float4 reflect(float4 v, float4 n);
|
nuclear@8
|
63 float4 transform(float4 v, global const float *xform);
|
nuclear@16
|
64 void transform_ray(struct Ray *ray, global const float *xform, global const float *invtrans);
|
nuclear@12
|
65 float4 calc_bary(float4 pt, global const struct Face *face, float4 norm);
|
nuclear@19
|
66 float mean(float4 v);
|
nuclear@4
|
67
|
nuclear@4
|
68 kernel void render(global float4 *fb,
|
nuclear@4
|
69 global const struct RendInfo *rinf,
|
nuclear@9
|
70 global const struct Face *faces,
|
nuclear@9
|
71 global const struct Material *matlib,
|
nuclear@4
|
72 global const struct Light *lights,
|
nuclear@7
|
73 global const struct Ray *primrays,
|
nuclear@12
|
74 global const float *xform,
|
nuclear@20
|
75 global const float *invtrans)
|
nuclear@2
|
76 {
|
nuclear@2
|
77 int idx = get_global_id(0);
|
nuclear@2
|
78
|
nuclear@16
|
79 struct Scene scn;
|
nuclear@16
|
80 scn.ambient = rinf->ambient;
|
nuclear@16
|
81 scn.faces = faces;
|
nuclear@16
|
82 scn.num_faces = rinf->num_faces;
|
nuclear@16
|
83 scn.lights = lights;
|
nuclear@16
|
84 scn.num_lights = rinf->num_lights;
|
nuclear@16
|
85 scn.matlib = matlib;
|
nuclear@8
|
86
|
nuclear@16
|
87 struct Ray ray = primrays[idx];
|
nuclear@16
|
88 transform_ray(&ray, xform, invtrans);
|
nuclear@4
|
89
|
nuclear@19
|
90 float4 pixel = (float4)(0, 0, 0, 0);
|
nuclear@19
|
91 float4 energy = (float4)(1.0, 1.0, 1.0, 1.0);
|
nuclear@19
|
92 int iter = 0;
|
nuclear@19
|
93
|
nuclear@19
|
94 while(iter++ < rinf->max_iter && mean(energy) > MIN_ENERGY) {
|
nuclear@19
|
95 struct SurfPoint sp;
|
nuclear@19
|
96 if(find_intersection(ray, &scn, &sp)) {
|
nuclear@19
|
97 pixel += shade(ray, &scn, &sp) * energy;
|
nuclear@19
|
98
|
nuclear@19
|
99 float4 refl_col = sp.mat.ks * sp.mat.kr;
|
nuclear@19
|
100
|
nuclear@19
|
101 ray.origin = sp.pos;
|
nuclear@19
|
102 ray.dir = reflect(-ray.dir, sp.norm);
|
nuclear@19
|
103
|
nuclear@19
|
104 energy *= sp.mat.ks * sp.mat.kr;
|
nuclear@19
|
105 } else {
|
nuclear@19
|
106 iter = INT_MAX - 1; // to break out of the loop
|
nuclear@19
|
107 }
|
nuclear@17
|
108 }
|
nuclear@19
|
109
|
nuclear@19
|
110 fb[idx] = pixel;
|
nuclear@4
|
111 }
|
nuclear@4
|
112
|
nuclear@16
|
113 float4 shade(struct Ray ray, struct Scene *scn, const struct SurfPoint *sp)
|
nuclear@16
|
114 {
|
nuclear@16
|
115 float4 norm = sp->norm;
|
nuclear@12
|
116 bool entering = true;
|
nuclear@12
|
117
|
nuclear@12
|
118 if(dot(ray.dir, norm) >= 0.0) {
|
nuclear@12
|
119 norm = -norm;
|
nuclear@12
|
120 entering = false;
|
nuclear@12
|
121 }
|
nuclear@12
|
122
|
nuclear@19
|
123 float4 dcol = scn->ambient * sp->mat.kd;
|
nuclear@8
|
124 float4 scol = (float4)(0, 0, 0, 0);
|
nuclear@5
|
125
|
nuclear@16
|
126 for(int i=0; i<scn->num_lights; i++) {
|
nuclear@16
|
127 float4 ldir = scn->lights[i].pos - sp->pos;
|
nuclear@5
|
128
|
nuclear@16
|
129 struct Ray shadowray;
|
nuclear@16
|
130 shadowray.origin = sp->pos;
|
nuclear@16
|
131 shadowray.dir = ldir;
|
nuclear@5
|
132
|
nuclear@16
|
133 if(!find_intersection(shadowray, scn, 0)) {
|
nuclear@16
|
134 ldir = normalize(ldir);
|
nuclear@16
|
135 float4 vdir = -normalize(ray.dir);
|
nuclear@16
|
136 float4 vref = reflect(vdir, norm);
|
nuclear@16
|
137
|
nuclear@16
|
138 float diff = fmax(dot(ldir, norm), 0.0f);
|
nuclear@19
|
139 dcol += sp->mat.kd * diff * scn->lights[i].color;
|
nuclear@16
|
140
|
nuclear@20
|
141 float spec = powr(fmax(dot(ldir, vref), 0.0f), sp->mat.spow);
|
nuclear@20
|
142 scol += sp->mat.ks * spec * scn->lights[i].color;
|
nuclear@16
|
143 }
|
nuclear@16
|
144 }
|
nuclear@16
|
145
|
nuclear@8
|
146 return dcol + scol;
|
nuclear@2
|
147 }
|
nuclear@2
|
148
|
nuclear@16
|
149
|
nuclear@16
|
150 bool find_intersection(struct Ray ray, const struct Scene *scn, struct SurfPoint *spres)
|
nuclear@12
|
151 {
|
nuclear@16
|
152 struct SurfPoint sp, sp0;
|
nuclear@16
|
153 sp0.t = 1.0;
|
nuclear@16
|
154 sp0.obj = 0;
|
nuclear@16
|
155
|
nuclear@16
|
156 for(int i=0; i<scn->num_faces; i++) {
|
nuclear@16
|
157 if(intersect(ray, scn->faces + i, &sp) && sp.t < sp0.t) {
|
nuclear@16
|
158 sp0 = sp;
|
nuclear@16
|
159 }
|
nuclear@16
|
160 }
|
nuclear@16
|
161
|
nuclear@16
|
162 if(!sp0.obj) {
|
nuclear@16
|
163 return false;
|
nuclear@16
|
164 }
|
nuclear@16
|
165
|
nuclear@16
|
166 if(spres) {
|
nuclear@16
|
167 *spres = sp0;
|
nuclear@19
|
168 spres->mat = scn->matlib[sp0.obj->matid];
|
nuclear@16
|
169 }
|
nuclear@16
|
170 return true;
|
nuclear@12
|
171 }
|
nuclear@12
|
172
|
nuclear@16
|
173 bool intersect(struct Ray ray, global const struct Face *face, struct SurfPoint *sp)
|
nuclear@2
|
174 {
|
nuclear@12
|
175 float4 origin = ray.origin;
|
nuclear@12
|
176 float4 dir = ray.dir;
|
nuclear@12
|
177 float4 norm = face->normal;
|
nuclear@12
|
178
|
nuclear@16
|
179 float ndotdir = dot(dir, norm);
|
nuclear@12
|
180
|
nuclear@9
|
181 if(fabs(ndotdir) <= EPSILON) {
|
nuclear@9
|
182 return false;
|
nuclear@9
|
183 }
|
nuclear@2
|
184
|
nuclear@9
|
185 float4 pt = face->v[0].pos;
|
nuclear@12
|
186 float4 vec = pt - origin;
|
nuclear@2
|
187
|
nuclear@16
|
188 float ndotvec = dot(norm, vec);
|
nuclear@9
|
189 float t = ndotvec / ndotdir;
|
nuclear@2
|
190
|
nuclear@2
|
191 if(t < EPSILON || t > 1.0) {
|
nuclear@2
|
192 return false;
|
nuclear@2
|
193 }
|
nuclear@12
|
194 pt = origin + dir * t;
|
nuclear@9
|
195
|
nuclear@12
|
196
|
nuclear@12
|
197 float4 bc = calc_bary(pt, face, norm);
|
nuclear@9
|
198 float bc_sum = bc.x + bc.y + bc.z;
|
nuclear@9
|
199
|
nuclear@20
|
200 if(bc_sum < 1.0 - EPSILON || bc_sum > 1.0 + EPSILON) {
|
nuclear@9
|
201 return false;
|
nuclear@12
|
202 bc *= 1.2;
|
nuclear@9
|
203 }
|
nuclear@2
|
204
|
nuclear@2
|
205 sp->t = t;
|
nuclear@9
|
206 sp->pos = pt;
|
nuclear@20
|
207 sp->norm = -normalize(face->v[0].normal * bc.x + face->v[1].normal * bc.y + face->v[2].normal * bc.z);
|
nuclear@9
|
208 sp->obj = face;
|
nuclear@12
|
209 sp->dbg = bc;
|
nuclear@2
|
210 return true;
|
nuclear@2
|
211 }
|
nuclear@5
|
212
|
nuclear@8
|
213 float4 reflect(float4 v, float4 n)
|
nuclear@5
|
214 {
|
nuclear@12
|
215 float4 res = 2.0f * dot(v, n) * n - v;
|
nuclear@12
|
216 return res;
|
nuclear@5
|
217 }
|
nuclear@8
|
218
|
nuclear@8
|
219 float4 transform(float4 v, global const float *xform)
|
nuclear@8
|
220 {
|
nuclear@8
|
221 float4 res;
|
nuclear@8
|
222 res.x = v.x * xform[0] + v.y * xform[4] + v.z * xform[8] + xform[12];
|
nuclear@8
|
223 res.y = v.x * xform[1] + v.y * xform[5] + v.z * xform[9] + xform[13];
|
nuclear@8
|
224 res.z = v.x * xform[2] + v.y * xform[6] + v.z * xform[10] + xform[14];
|
nuclear@12
|
225 res.w = 0.0;
|
nuclear@8
|
226 return res;
|
nuclear@8
|
227 }
|
nuclear@8
|
228
|
nuclear@16
|
229 void transform_ray(struct Ray *ray, global const float *xform, global const float *invtrans)
|
nuclear@8
|
230 {
|
nuclear@16
|
231 ray->origin = transform(ray->origin, xform);
|
nuclear@16
|
232 ray->dir = transform(ray->dir, invtrans);
|
nuclear@8
|
233 }
|
nuclear@9
|
234
|
nuclear@12
|
235 float4 calc_bary(float4 pt, global const struct Face *face, float4 norm)
|
nuclear@9
|
236 {
|
nuclear@12
|
237 float4 bc = (float4)(0, 0, 0, 0);
|
nuclear@9
|
238
|
nuclear@12
|
239 // calculate area of the whole triangle
|
nuclear@12
|
240 float4 v1 = face->v[1].pos - face->v[0].pos;
|
nuclear@12
|
241 float4 v2 = face->v[2].pos - face->v[0].pos;
|
nuclear@12
|
242 float4 xv1v2 = cross(v1, v2);
|
nuclear@12
|
243
|
nuclear@16
|
244 float area = fabs(dot(xv1v2, norm)) * 0.5;
|
nuclear@9
|
245 if(area < EPSILON) {
|
nuclear@9
|
246 return bc;
|
nuclear@9
|
247 }
|
nuclear@9
|
248
|
nuclear@9
|
249 float4 pv0 = face->v[0].pos - pt;
|
nuclear@9
|
250 float4 pv1 = face->v[1].pos - pt;
|
nuclear@9
|
251 float4 pv2 = face->v[2].pos - pt;
|
nuclear@9
|
252
|
nuclear@12
|
253 // calculate the area of each sub-triangle
|
nuclear@12
|
254 float4 x12 = cross(pv1, pv2);
|
nuclear@12
|
255 float4 x20 = cross(pv2, pv0);
|
nuclear@12
|
256 float4 x01 = cross(pv0, pv1);
|
nuclear@12
|
257
|
nuclear@16
|
258 float a0 = fabs(dot(x12, norm)) * 0.5;
|
nuclear@16
|
259 float a1 = fabs(dot(x20, norm)) * 0.5;
|
nuclear@16
|
260 float a2 = fabs(dot(x01, norm)) * 0.5;
|
nuclear@9
|
261
|
nuclear@9
|
262 bc.x = a0 / area;
|
nuclear@9
|
263 bc.y = a1 / area;
|
nuclear@9
|
264 bc.z = a2 / area;
|
nuclear@9
|
265 return bc;
|
nuclear@9
|
266 }
|
nuclear@19
|
267
|
nuclear@19
|
268 float mean(float4 v)
|
nuclear@19
|
269 {
|
nuclear@19
|
270 return native_divide(v.x + v.y + v.z, 3.0);
|
nuclear@19
|
271 }
|