nuclear@10: /* nuclear@10: libvmath - a vector math library nuclear@10: Copyright (C) 2004-2015 John Tsiombikas nuclear@10: nuclear@10: This program is free software: you can redistribute it and/or modify nuclear@10: it under the terms of the GNU Lesser General Public License as published nuclear@10: by the Free Software Foundation, either version 3 of the License, or nuclear@10: (at your option) any later version. nuclear@10: nuclear@10: This program is distributed in the hope that it will be useful, nuclear@10: but WITHOUT ANY WARRANTY; without even the implied warranty of nuclear@10: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the nuclear@10: GNU Lesser General Public License for more details. nuclear@10: nuclear@10: You should have received a copy of the GNU Lesser General Public License nuclear@10: along with this program. If not, see . nuclear@10: */ nuclear@10: nuclear@10: #include nuclear@10: nuclear@10: static inline scalar_t smoothstep(float a, float b, float x) nuclear@10: { nuclear@10: if(x < a) return 0.0; nuclear@10: if(x >= b) return 1.0; nuclear@10: nuclear@10: x = (x - a) / (b - a); nuclear@10: return x * x * (3.0 - 2.0 * x); nuclear@10: } nuclear@10: nuclear@10: /** Generates a random number in [0, range) */ nuclear@10: static inline scalar_t frand(scalar_t range) nuclear@10: { nuclear@10: return range * (scalar_t)rand() / (scalar_t)RAND_MAX; nuclear@10: } nuclear@10: nuclear@10: /** Generates a random vector on the surface of a sphere */ nuclear@10: static inline vec3_t sphrand(scalar_t rad) nuclear@10: { nuclear@10: scalar_t u = (scalar_t)rand() / RAND_MAX; nuclear@10: scalar_t v = (scalar_t)rand() / RAND_MAX; nuclear@10: nuclear@10: scalar_t theta = 2.0 * M_PI * u; nuclear@10: scalar_t phi = acos(2.0 * v - 1.0); nuclear@10: nuclear@10: vec3_t res; nuclear@10: res.x = rad * cos(theta) * sin(phi); nuclear@10: res.y = rad * sin(theta) * sin(phi); nuclear@10: res.z = rad * cos(phi); nuclear@10: return res; nuclear@10: } nuclear@10: nuclear@10: /** linear interpolation */ nuclear@10: static inline scalar_t lerp(scalar_t a, scalar_t b, scalar_t t) nuclear@10: { nuclear@10: return a + (b - a) * t; nuclear@10: }