3dphotoshoot
diff libs/libjpeg/jddctmgr.c @ 14:06dc8b9b4f89
added libimago, libjpeg and libpng
author | John Tsiombikas <nuclear@member.fsf.org> |
---|---|
date | Sun, 07 Jun 2015 17:25:49 +0300 |
parents | |
children |
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/libs/libjpeg/jddctmgr.c Sun Jun 07 17:25:49 2015 +0300 1.3 @@ -0,0 +1,269 @@ 1.4 +/* 1.5 + * jddctmgr.c 1.6 + * 1.7 + * Copyright (C) 1994-1996, Thomas G. Lane. 1.8 + * This file is part of the Independent JPEG Group's software. 1.9 + * For conditions of distribution and use, see the accompanying README file. 1.10 + * 1.11 + * This file contains the inverse-DCT management logic. 1.12 + * This code selects a particular IDCT implementation to be used, 1.13 + * and it performs related housekeeping chores. No code in this file 1.14 + * is executed per IDCT step, only during output pass setup. 1.15 + * 1.16 + * Note that the IDCT routines are responsible for performing coefficient 1.17 + * dequantization as well as the IDCT proper. This module sets up the 1.18 + * dequantization multiplier table needed by the IDCT routine. 1.19 + */ 1.20 + 1.21 +#define JPEG_INTERNALS 1.22 +#include "jinclude.h" 1.23 +#include "jpeglib.h" 1.24 +#include "jdct.h" /* Private declarations for DCT subsystem */ 1.25 + 1.26 + 1.27 +/* 1.28 + * The decompressor input side (jdinput.c) saves away the appropriate 1.29 + * quantization table for each component at the start of the first scan 1.30 + * involving that component. (This is necessary in order to correctly 1.31 + * decode files that reuse Q-table slots.) 1.32 + * When we are ready to make an output pass, the saved Q-table is converted 1.33 + * to a multiplier table that will actually be used by the IDCT routine. 1.34 + * The multiplier table contents are IDCT-method-dependent. To support 1.35 + * application changes in IDCT method between scans, we can remake the 1.36 + * multiplier tables if necessary. 1.37 + * In buffered-image mode, the first output pass may occur before any data 1.38 + * has been seen for some components, and thus before their Q-tables have 1.39 + * been saved away. To handle this case, multiplier tables are preset 1.40 + * to zeroes; the result of the IDCT will be a neutral gray level. 1.41 + */ 1.42 + 1.43 + 1.44 +/* Private subobject for this module */ 1.45 + 1.46 +typedef struct { 1.47 + struct jpeg_inverse_dct pub; /* public fields */ 1.48 + 1.49 + /* This array contains the IDCT method code that each multiplier table 1.50 + * is currently set up for, or -1 if it's not yet set up. 1.51 + * The actual multiplier tables are pointed to by dct_table in the 1.52 + * per-component comp_info structures. 1.53 + */ 1.54 + int cur_method[MAX_COMPONENTS]; 1.55 +} my_idct_controller; 1.56 + 1.57 +typedef my_idct_controller * my_idct_ptr; 1.58 + 1.59 + 1.60 +/* Allocated multiplier tables: big enough for any supported variant */ 1.61 + 1.62 +typedef union { 1.63 + ISLOW_MULT_TYPE islow_array[DCTSIZE2]; 1.64 +#ifdef DCT_IFAST_SUPPORTED 1.65 + IFAST_MULT_TYPE ifast_array[DCTSIZE2]; 1.66 +#endif 1.67 +#ifdef DCT_FLOAT_SUPPORTED 1.68 + FLOAT_MULT_TYPE float_array[DCTSIZE2]; 1.69 +#endif 1.70 +} multiplier_table; 1.71 + 1.72 + 1.73 +/* The current scaled-IDCT routines require ISLOW-style multiplier tables, 1.74 + * so be sure to compile that code if either ISLOW or SCALING is requested. 1.75 + */ 1.76 +#ifdef DCT_ISLOW_SUPPORTED 1.77 +#define PROVIDE_ISLOW_TABLES 1.78 +#else 1.79 +#ifdef IDCT_SCALING_SUPPORTED 1.80 +#define PROVIDE_ISLOW_TABLES 1.81 +#endif 1.82 +#endif 1.83 + 1.84 + 1.85 +/* 1.86 + * Prepare for an output pass. 1.87 + * Here we select the proper IDCT routine for each component and build 1.88 + * a matching multiplier table. 1.89 + */ 1.90 + 1.91 +METHODDEF(void) 1.92 +start_pass (j_decompress_ptr cinfo) 1.93 +{ 1.94 + my_idct_ptr idct = (my_idct_ptr) cinfo->idct; 1.95 + int ci, i; 1.96 + jpeg_component_info *compptr; 1.97 + int method = 0; 1.98 + inverse_DCT_method_ptr method_ptr = NULL; 1.99 + JQUANT_TBL * qtbl; 1.100 + 1.101 + for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 1.102 + ci++, compptr++) { 1.103 + /* Select the proper IDCT routine for this component's scaling */ 1.104 + switch (compptr->DCT_scaled_size) { 1.105 +#ifdef IDCT_SCALING_SUPPORTED 1.106 + case 1: 1.107 + method_ptr = jpeg_idct_1x1; 1.108 + method = JDCT_ISLOW; /* jidctred uses islow-style table */ 1.109 + break; 1.110 + case 2: 1.111 + method_ptr = jpeg_idct_2x2; 1.112 + method = JDCT_ISLOW; /* jidctred uses islow-style table */ 1.113 + break; 1.114 + case 4: 1.115 + method_ptr = jpeg_idct_4x4; 1.116 + method = JDCT_ISLOW; /* jidctred uses islow-style table */ 1.117 + break; 1.118 +#endif 1.119 + case DCTSIZE: 1.120 + switch (cinfo->dct_method) { 1.121 +#ifdef DCT_ISLOW_SUPPORTED 1.122 + case JDCT_ISLOW: 1.123 + method_ptr = jpeg_idct_islow; 1.124 + method = JDCT_ISLOW; 1.125 + break; 1.126 +#endif 1.127 +#ifdef DCT_IFAST_SUPPORTED 1.128 + case JDCT_IFAST: 1.129 + method_ptr = jpeg_idct_ifast; 1.130 + method = JDCT_IFAST; 1.131 + break; 1.132 +#endif 1.133 +#ifdef DCT_FLOAT_SUPPORTED 1.134 + case JDCT_FLOAT: 1.135 + method_ptr = jpeg_idct_float; 1.136 + method = JDCT_FLOAT; 1.137 + break; 1.138 +#endif 1.139 + default: 1.140 + ERREXIT(cinfo, JERR_NOT_COMPILED); 1.141 + break; 1.142 + } 1.143 + break; 1.144 + default: 1.145 + ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size); 1.146 + break; 1.147 + } 1.148 + idct->pub.inverse_DCT[ci] = method_ptr; 1.149 + /* Create multiplier table from quant table. 1.150 + * However, we can skip this if the component is uninteresting 1.151 + * or if we already built the table. Also, if no quant table 1.152 + * has yet been saved for the component, we leave the 1.153 + * multiplier table all-zero; we'll be reading zeroes from the 1.154 + * coefficient controller's buffer anyway. 1.155 + */ 1.156 + if (! compptr->component_needed || idct->cur_method[ci] == method) 1.157 + continue; 1.158 + qtbl = compptr->quant_table; 1.159 + if (qtbl == NULL) /* happens if no data yet for component */ 1.160 + continue; 1.161 + idct->cur_method[ci] = method; 1.162 + switch (method) { 1.163 +#ifdef PROVIDE_ISLOW_TABLES 1.164 + case JDCT_ISLOW: 1.165 + { 1.166 + /* For LL&M IDCT method, multipliers are equal to raw quantization 1.167 + * coefficients, but are stored as ints to ensure access efficiency. 1.168 + */ 1.169 + ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table; 1.170 + for (i = 0; i < DCTSIZE2; i++) { 1.171 + ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i]; 1.172 + } 1.173 + } 1.174 + break; 1.175 +#endif 1.176 +#ifdef DCT_IFAST_SUPPORTED 1.177 + case JDCT_IFAST: 1.178 + { 1.179 + /* For AA&N IDCT method, multipliers are equal to quantization 1.180 + * coefficients scaled by scalefactor[row]*scalefactor[col], where 1.181 + * scalefactor[0] = 1 1.182 + * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 1.183 + * For integer operation, the multiplier table is to be scaled by 1.184 + * IFAST_SCALE_BITS. 1.185 + */ 1.186 + IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table; 1.187 +#define CONST_BITS 14 1.188 + static const INT16 aanscales[DCTSIZE2] = { 1.189 + /* precomputed values scaled up by 14 bits */ 1.190 + 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 1.191 + 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, 1.192 + 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, 1.193 + 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, 1.194 + 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 1.195 + 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, 1.196 + 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, 1.197 + 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 1.198 + }; 1.199 + SHIFT_TEMPS 1.200 + 1.201 + for (i = 0; i < DCTSIZE2; i++) { 1.202 + ifmtbl[i] = (IFAST_MULT_TYPE) 1.203 + DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], 1.204 + (INT32) aanscales[i]), 1.205 + CONST_BITS-IFAST_SCALE_BITS); 1.206 + } 1.207 + } 1.208 + break; 1.209 +#endif 1.210 +#ifdef DCT_FLOAT_SUPPORTED 1.211 + case JDCT_FLOAT: 1.212 + { 1.213 + /* For float AA&N IDCT method, multipliers are equal to quantization 1.214 + * coefficients scaled by scalefactor[row]*scalefactor[col], where 1.215 + * scalefactor[0] = 1 1.216 + * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 1.217 + */ 1.218 + FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table; 1.219 + int row, col; 1.220 + static const double aanscalefactor[DCTSIZE] = { 1.221 + 1.0, 1.387039845, 1.306562965, 1.175875602, 1.222 + 1.0, 0.785694958, 0.541196100, 0.275899379 1.223 + }; 1.224 + 1.225 + i = 0; 1.226 + for (row = 0; row < DCTSIZE; row++) { 1.227 + for (col = 0; col < DCTSIZE; col++) { 1.228 + fmtbl[i] = (FLOAT_MULT_TYPE) 1.229 + ((double) qtbl->quantval[i] * 1.230 + aanscalefactor[row] * aanscalefactor[col]); 1.231 + i++; 1.232 + } 1.233 + } 1.234 + } 1.235 + break; 1.236 +#endif 1.237 + default: 1.238 + ERREXIT(cinfo, JERR_NOT_COMPILED); 1.239 + break; 1.240 + } 1.241 + } 1.242 +} 1.243 + 1.244 + 1.245 +/* 1.246 + * Initialize IDCT manager. 1.247 + */ 1.248 + 1.249 +GLOBAL(void) 1.250 +jinit_inverse_dct (j_decompress_ptr cinfo) 1.251 +{ 1.252 + my_idct_ptr idct; 1.253 + int ci; 1.254 + jpeg_component_info *compptr; 1.255 + 1.256 + idct = (my_idct_ptr) 1.257 + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.258 + SIZEOF(my_idct_controller)); 1.259 + cinfo->idct = (struct jpeg_inverse_dct *) idct; 1.260 + idct->pub.start_pass = start_pass; 1.261 + 1.262 + for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 1.263 + ci++, compptr++) { 1.264 + /* Allocate and pre-zero a multiplier table for each component */ 1.265 + compptr->dct_table = 1.266 + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.267 + SIZEOF(multiplier_table)); 1.268 + MEMZERO(compptr->dct_table, SIZEOF(multiplier_table)); 1.269 + /* Mark multiplier table not yet set up for any method */ 1.270 + idct->cur_method[ci] = -1; 1.271 + } 1.272 +}