3dphotoshoot
diff libs/libjpeg/jcdctmgr.c @ 14:06dc8b9b4f89
added libimago, libjpeg and libpng
author | John Tsiombikas <nuclear@member.fsf.org> |
---|---|
date | Sun, 07 Jun 2015 17:25:49 +0300 |
parents | |
children |
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/libs/libjpeg/jcdctmgr.c Sun Jun 07 17:25:49 2015 +0300 1.3 @@ -0,0 +1,387 @@ 1.4 +/* 1.5 + * jcdctmgr.c 1.6 + * 1.7 + * Copyright (C) 1994-1996, Thomas G. Lane. 1.8 + * This file is part of the Independent JPEG Group's software. 1.9 + * For conditions of distribution and use, see the accompanying README file. 1.10 + * 1.11 + * This file contains the forward-DCT management logic. 1.12 + * This code selects a particular DCT implementation to be used, 1.13 + * and it performs related housekeeping chores including coefficient 1.14 + * quantization. 1.15 + */ 1.16 + 1.17 +#define JPEG_INTERNALS 1.18 +#include "jinclude.h" 1.19 +#include "jpeglib.h" 1.20 +#include "jdct.h" /* Private declarations for DCT subsystem */ 1.21 + 1.22 + 1.23 +/* Private subobject for this module */ 1.24 + 1.25 +typedef struct { 1.26 + struct jpeg_forward_dct pub; /* public fields */ 1.27 + 1.28 + /* Pointer to the DCT routine actually in use */ 1.29 + forward_DCT_method_ptr do_dct; 1.30 + 1.31 + /* The actual post-DCT divisors --- not identical to the quant table 1.32 + * entries, because of scaling (especially for an unnormalized DCT). 1.33 + * Each table is given in normal array order. 1.34 + */ 1.35 + DCTELEM * divisors[NUM_QUANT_TBLS]; 1.36 + 1.37 +#ifdef DCT_FLOAT_SUPPORTED 1.38 + /* Same as above for the floating-point case. */ 1.39 + float_DCT_method_ptr do_float_dct; 1.40 + FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; 1.41 +#endif 1.42 +} my_fdct_controller; 1.43 + 1.44 +typedef my_fdct_controller * my_fdct_ptr; 1.45 + 1.46 + 1.47 +/* 1.48 + * Initialize for a processing pass. 1.49 + * Verify that all referenced Q-tables are present, and set up 1.50 + * the divisor table for each one. 1.51 + * In the current implementation, DCT of all components is done during 1.52 + * the first pass, even if only some components will be output in the 1.53 + * first scan. Hence all components should be examined here. 1.54 + */ 1.55 + 1.56 +METHODDEF(void) 1.57 +start_pass_fdctmgr (j_compress_ptr cinfo) 1.58 +{ 1.59 + my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; 1.60 + int ci, qtblno, i; 1.61 + jpeg_component_info *compptr; 1.62 + JQUANT_TBL * qtbl; 1.63 + DCTELEM * dtbl; 1.64 + 1.65 + for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 1.66 + ci++, compptr++) { 1.67 + qtblno = compptr->quant_tbl_no; 1.68 + /* Make sure specified quantization table is present */ 1.69 + if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || 1.70 + cinfo->quant_tbl_ptrs[qtblno] == NULL) 1.71 + ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); 1.72 + qtbl = cinfo->quant_tbl_ptrs[qtblno]; 1.73 + /* Compute divisors for this quant table */ 1.74 + /* We may do this more than once for same table, but it's not a big deal */ 1.75 + switch (cinfo->dct_method) { 1.76 +#ifdef DCT_ISLOW_SUPPORTED 1.77 + case JDCT_ISLOW: 1.78 + /* For LL&M IDCT method, divisors are equal to raw quantization 1.79 + * coefficients multiplied by 8 (to counteract scaling). 1.80 + */ 1.81 + if (fdct->divisors[qtblno] == NULL) { 1.82 + fdct->divisors[qtblno] = (DCTELEM *) 1.83 + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.84 + DCTSIZE2 * SIZEOF(DCTELEM)); 1.85 + } 1.86 + dtbl = fdct->divisors[qtblno]; 1.87 + for (i = 0; i < DCTSIZE2; i++) { 1.88 + dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3; 1.89 + } 1.90 + break; 1.91 +#endif 1.92 +#ifdef DCT_IFAST_SUPPORTED 1.93 + case JDCT_IFAST: 1.94 + { 1.95 + /* For AA&N IDCT method, divisors are equal to quantization 1.96 + * coefficients scaled by scalefactor[row]*scalefactor[col], where 1.97 + * scalefactor[0] = 1 1.98 + * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 1.99 + * We apply a further scale factor of 8. 1.100 + */ 1.101 +#define CONST_BITS 14 1.102 + static const INT16 aanscales[DCTSIZE2] = { 1.103 + /* precomputed values scaled up by 14 bits */ 1.104 + 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 1.105 + 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, 1.106 + 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, 1.107 + 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, 1.108 + 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 1.109 + 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, 1.110 + 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, 1.111 + 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 1.112 + }; 1.113 + SHIFT_TEMPS 1.114 + 1.115 + if (fdct->divisors[qtblno] == NULL) { 1.116 + fdct->divisors[qtblno] = (DCTELEM *) 1.117 + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.118 + DCTSIZE2 * SIZEOF(DCTELEM)); 1.119 + } 1.120 + dtbl = fdct->divisors[qtblno]; 1.121 + for (i = 0; i < DCTSIZE2; i++) { 1.122 + dtbl[i] = (DCTELEM) 1.123 + DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], 1.124 + (INT32) aanscales[i]), 1.125 + CONST_BITS-3); 1.126 + } 1.127 + } 1.128 + break; 1.129 +#endif 1.130 +#ifdef DCT_FLOAT_SUPPORTED 1.131 + case JDCT_FLOAT: 1.132 + { 1.133 + /* For float AA&N IDCT method, divisors are equal to quantization 1.134 + * coefficients scaled by scalefactor[row]*scalefactor[col], where 1.135 + * scalefactor[0] = 1 1.136 + * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 1.137 + * We apply a further scale factor of 8. 1.138 + * What's actually stored is 1/divisor so that the inner loop can 1.139 + * use a multiplication rather than a division. 1.140 + */ 1.141 + FAST_FLOAT * fdtbl; 1.142 + int row, col; 1.143 + static const double aanscalefactor[DCTSIZE] = { 1.144 + 1.0, 1.387039845, 1.306562965, 1.175875602, 1.145 + 1.0, 0.785694958, 0.541196100, 0.275899379 1.146 + }; 1.147 + 1.148 + if (fdct->float_divisors[qtblno] == NULL) { 1.149 + fdct->float_divisors[qtblno] = (FAST_FLOAT *) 1.150 + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.151 + DCTSIZE2 * SIZEOF(FAST_FLOAT)); 1.152 + } 1.153 + fdtbl = fdct->float_divisors[qtblno]; 1.154 + i = 0; 1.155 + for (row = 0; row < DCTSIZE; row++) { 1.156 + for (col = 0; col < DCTSIZE; col++) { 1.157 + fdtbl[i] = (FAST_FLOAT) 1.158 + (1.0 / (((double) qtbl->quantval[i] * 1.159 + aanscalefactor[row] * aanscalefactor[col] * 8.0))); 1.160 + i++; 1.161 + } 1.162 + } 1.163 + } 1.164 + break; 1.165 +#endif 1.166 + default: 1.167 + ERREXIT(cinfo, JERR_NOT_COMPILED); 1.168 + break; 1.169 + } 1.170 + } 1.171 +} 1.172 + 1.173 + 1.174 +/* 1.175 + * Perform forward DCT on one or more blocks of a component. 1.176 + * 1.177 + * The input samples are taken from the sample_data[] array starting at 1.178 + * position start_row/start_col, and moving to the right for any additional 1.179 + * blocks. The quantized coefficients are returned in coef_blocks[]. 1.180 + */ 1.181 + 1.182 +METHODDEF(void) 1.183 +forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, 1.184 + JSAMPARRAY sample_data, JBLOCKROW coef_blocks, 1.185 + JDIMENSION start_row, JDIMENSION start_col, 1.186 + JDIMENSION num_blocks) 1.187 +/* This version is used for integer DCT implementations. */ 1.188 +{ 1.189 + /* This routine is heavily used, so it's worth coding it tightly. */ 1.190 + my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; 1.191 + forward_DCT_method_ptr do_dct = fdct->do_dct; 1.192 + DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; 1.193 + DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */ 1.194 + JDIMENSION bi; 1.195 + 1.196 + sample_data += start_row; /* fold in the vertical offset once */ 1.197 + 1.198 + for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { 1.199 + /* Load data into workspace, applying unsigned->signed conversion */ 1.200 + { register DCTELEM *workspaceptr; 1.201 + register JSAMPROW elemptr; 1.202 + register int elemr; 1.203 + 1.204 + workspaceptr = workspace; 1.205 + for (elemr = 0; elemr < DCTSIZE; elemr++) { 1.206 + elemptr = sample_data[elemr] + start_col; 1.207 +#if DCTSIZE == 8 /* unroll the inner loop */ 1.208 + *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; 1.209 + *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; 1.210 + *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; 1.211 + *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; 1.212 + *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; 1.213 + *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; 1.214 + *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; 1.215 + *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; 1.216 +#else 1.217 + { register int elemc; 1.218 + for (elemc = DCTSIZE; elemc > 0; elemc--) { 1.219 + *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; 1.220 + } 1.221 + } 1.222 +#endif 1.223 + } 1.224 + } 1.225 + 1.226 + /* Perform the DCT */ 1.227 + (*do_dct) (workspace); 1.228 + 1.229 + /* Quantize/descale the coefficients, and store into coef_blocks[] */ 1.230 + { register DCTELEM temp, qval; 1.231 + register int i; 1.232 + register JCOEFPTR output_ptr = coef_blocks[bi]; 1.233 + 1.234 + for (i = 0; i < DCTSIZE2; i++) { 1.235 + qval = divisors[i]; 1.236 + temp = workspace[i]; 1.237 + /* Divide the coefficient value by qval, ensuring proper rounding. 1.238 + * Since C does not specify the direction of rounding for negative 1.239 + * quotients, we have to force the dividend positive for portability. 1.240 + * 1.241 + * In most files, at least half of the output values will be zero 1.242 + * (at default quantization settings, more like three-quarters...) 1.243 + * so we should ensure that this case is fast. On many machines, 1.244 + * a comparison is enough cheaper than a divide to make a special test 1.245 + * a win. Since both inputs will be nonnegative, we need only test 1.246 + * for a < b to discover whether a/b is 0. 1.247 + * If your machine's division is fast enough, define FAST_DIVIDE. 1.248 + */ 1.249 +#ifdef FAST_DIVIDE 1.250 +#define DIVIDE_BY(a,b) a /= b 1.251 +#else 1.252 +#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 1.253 +#endif 1.254 + if (temp < 0) { 1.255 + temp = -temp; 1.256 + temp += qval>>1; /* for rounding */ 1.257 + DIVIDE_BY(temp, qval); 1.258 + temp = -temp; 1.259 + } else { 1.260 + temp += qval>>1; /* for rounding */ 1.261 + DIVIDE_BY(temp, qval); 1.262 + } 1.263 + output_ptr[i] = (JCOEF) temp; 1.264 + } 1.265 + } 1.266 + } 1.267 +} 1.268 + 1.269 + 1.270 +#ifdef DCT_FLOAT_SUPPORTED 1.271 + 1.272 +METHODDEF(void) 1.273 +forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, 1.274 + JSAMPARRAY sample_data, JBLOCKROW coef_blocks, 1.275 + JDIMENSION start_row, JDIMENSION start_col, 1.276 + JDIMENSION num_blocks) 1.277 +/* This version is used for floating-point DCT implementations. */ 1.278 +{ 1.279 + /* This routine is heavily used, so it's worth coding it tightly. */ 1.280 + my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; 1.281 + float_DCT_method_ptr do_dct = fdct->do_float_dct; 1.282 + FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; 1.283 + FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */ 1.284 + JDIMENSION bi; 1.285 + 1.286 + sample_data += start_row; /* fold in the vertical offset once */ 1.287 + 1.288 + for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { 1.289 + /* Load data into workspace, applying unsigned->signed conversion */ 1.290 + { register FAST_FLOAT *workspaceptr; 1.291 + register JSAMPROW elemptr; 1.292 + register int elemr; 1.293 + 1.294 + workspaceptr = workspace; 1.295 + for (elemr = 0; elemr < DCTSIZE; elemr++) { 1.296 + elemptr = sample_data[elemr] + start_col; 1.297 +#if DCTSIZE == 8 /* unroll the inner loop */ 1.298 + *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); 1.299 + *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); 1.300 + *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); 1.301 + *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); 1.302 + *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); 1.303 + *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); 1.304 + *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); 1.305 + *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); 1.306 +#else 1.307 + { register int elemc; 1.308 + for (elemc = DCTSIZE; elemc > 0; elemc--) { 1.309 + *workspaceptr++ = (FAST_FLOAT) 1.310 + (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); 1.311 + } 1.312 + } 1.313 +#endif 1.314 + } 1.315 + } 1.316 + 1.317 + /* Perform the DCT */ 1.318 + (*do_dct) (workspace); 1.319 + 1.320 + /* Quantize/descale the coefficients, and store into coef_blocks[] */ 1.321 + { register FAST_FLOAT temp; 1.322 + register int i; 1.323 + register JCOEFPTR output_ptr = coef_blocks[bi]; 1.324 + 1.325 + for (i = 0; i < DCTSIZE2; i++) { 1.326 + /* Apply the quantization and scaling factor */ 1.327 + temp = workspace[i] * divisors[i]; 1.328 + /* Round to nearest integer. 1.329 + * Since C does not specify the direction of rounding for negative 1.330 + * quotients, we have to force the dividend positive for portability. 1.331 + * The maximum coefficient size is +-16K (for 12-bit data), so this 1.332 + * code should work for either 16-bit or 32-bit ints. 1.333 + */ 1.334 + output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); 1.335 + } 1.336 + } 1.337 + } 1.338 +} 1.339 + 1.340 +#endif /* DCT_FLOAT_SUPPORTED */ 1.341 + 1.342 + 1.343 +/* 1.344 + * Initialize FDCT manager. 1.345 + */ 1.346 + 1.347 +GLOBAL(void) 1.348 +jinit_forward_dct (j_compress_ptr cinfo) 1.349 +{ 1.350 + my_fdct_ptr fdct; 1.351 + int i; 1.352 + 1.353 + fdct = (my_fdct_ptr) 1.354 + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.355 + SIZEOF(my_fdct_controller)); 1.356 + cinfo->fdct = (struct jpeg_forward_dct *) fdct; 1.357 + fdct->pub.start_pass = start_pass_fdctmgr; 1.358 + 1.359 + switch (cinfo->dct_method) { 1.360 +#ifdef DCT_ISLOW_SUPPORTED 1.361 + case JDCT_ISLOW: 1.362 + fdct->pub.forward_DCT = forward_DCT; 1.363 + fdct->do_dct = jpeg_fdct_islow; 1.364 + break; 1.365 +#endif 1.366 +#ifdef DCT_IFAST_SUPPORTED 1.367 + case JDCT_IFAST: 1.368 + fdct->pub.forward_DCT = forward_DCT; 1.369 + fdct->do_dct = jpeg_fdct_ifast; 1.370 + break; 1.371 +#endif 1.372 +#ifdef DCT_FLOAT_SUPPORTED 1.373 + case JDCT_FLOAT: 1.374 + fdct->pub.forward_DCT = forward_DCT_float; 1.375 + fdct->do_float_dct = jpeg_fdct_float; 1.376 + break; 1.377 +#endif 1.378 + default: 1.379 + ERREXIT(cinfo, JERR_NOT_COMPILED); 1.380 + break; 1.381 + } 1.382 + 1.383 + /* Mark divisor tables unallocated */ 1.384 + for (i = 0; i < NUM_QUANT_TBLS; i++) { 1.385 + fdct->divisors[i] = NULL; 1.386 +#ifdef DCT_FLOAT_SUPPORTED 1.387 + fdct->float_divisors[i] = NULL; 1.388 +#endif 1.389 + } 1.390 +}