3dphotoshoot
diff libs/libjpeg/jccoefct.c @ 14:06dc8b9b4f89
added libimago, libjpeg and libpng
author | John Tsiombikas <nuclear@member.fsf.org> |
---|---|
date | Sun, 07 Jun 2015 17:25:49 +0300 |
parents | |
children |
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/libs/libjpeg/jccoefct.c Sun Jun 07 17:25:49 2015 +0300 1.3 @@ -0,0 +1,449 @@ 1.4 +/* 1.5 + * jccoefct.c 1.6 + * 1.7 + * Copyright (C) 1994-1997, Thomas G. Lane. 1.8 + * This file is part of the Independent JPEG Group's software. 1.9 + * For conditions of distribution and use, see the accompanying README file. 1.10 + * 1.11 + * This file contains the coefficient buffer controller for compression. 1.12 + * This controller is the top level of the JPEG compressor proper. 1.13 + * The coefficient buffer lies between forward-DCT and entropy encoding steps. 1.14 + */ 1.15 + 1.16 +#define JPEG_INTERNALS 1.17 +#include "jinclude.h" 1.18 +#include "jpeglib.h" 1.19 + 1.20 + 1.21 +/* We use a full-image coefficient buffer when doing Huffman optimization, 1.22 + * and also for writing multiple-scan JPEG files. In all cases, the DCT 1.23 + * step is run during the first pass, and subsequent passes need only read 1.24 + * the buffered coefficients. 1.25 + */ 1.26 +#ifdef ENTROPY_OPT_SUPPORTED 1.27 +#define FULL_COEF_BUFFER_SUPPORTED 1.28 +#else 1.29 +#ifdef C_MULTISCAN_FILES_SUPPORTED 1.30 +#define FULL_COEF_BUFFER_SUPPORTED 1.31 +#endif 1.32 +#endif 1.33 + 1.34 + 1.35 +/* Private buffer controller object */ 1.36 + 1.37 +typedef struct { 1.38 + struct jpeg_c_coef_controller pub; /* public fields */ 1.39 + 1.40 + JDIMENSION iMCU_row_num; /* iMCU row # within image */ 1.41 + JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ 1.42 + int MCU_vert_offset; /* counts MCU rows within iMCU row */ 1.43 + int MCU_rows_per_iMCU_row; /* number of such rows needed */ 1.44 + 1.45 + /* For single-pass compression, it's sufficient to buffer just one MCU 1.46 + * (although this may prove a bit slow in practice). We allocate a 1.47 + * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each 1.48 + * MCU constructed and sent. (On 80x86, the workspace is FAR even though 1.49 + * it's not really very big; this is to keep the module interfaces unchanged 1.50 + * when a large coefficient buffer is necessary.) 1.51 + * In multi-pass modes, this array points to the current MCU's blocks 1.52 + * within the virtual arrays. 1.53 + */ 1.54 + JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; 1.55 + 1.56 + /* In multi-pass modes, we need a virtual block array for each component. */ 1.57 + jvirt_barray_ptr whole_image[MAX_COMPONENTS]; 1.58 +} my_coef_controller; 1.59 + 1.60 +typedef my_coef_controller * my_coef_ptr; 1.61 + 1.62 + 1.63 +/* Forward declarations */ 1.64 +METHODDEF(boolean) compress_data 1.65 + JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); 1.66 +#ifdef FULL_COEF_BUFFER_SUPPORTED 1.67 +METHODDEF(boolean) compress_first_pass 1.68 + JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); 1.69 +METHODDEF(boolean) compress_output 1.70 + JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); 1.71 +#endif 1.72 + 1.73 + 1.74 +LOCAL(void) 1.75 +start_iMCU_row (j_compress_ptr cinfo) 1.76 +/* Reset within-iMCU-row counters for a new row */ 1.77 +{ 1.78 + my_coef_ptr coef = (my_coef_ptr) cinfo->coef; 1.79 + 1.80 + /* In an interleaved scan, an MCU row is the same as an iMCU row. 1.81 + * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. 1.82 + * But at the bottom of the image, process only what's left. 1.83 + */ 1.84 + if (cinfo->comps_in_scan > 1) { 1.85 + coef->MCU_rows_per_iMCU_row = 1; 1.86 + } else { 1.87 + if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) 1.88 + coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; 1.89 + else 1.90 + coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; 1.91 + } 1.92 + 1.93 + coef->mcu_ctr = 0; 1.94 + coef->MCU_vert_offset = 0; 1.95 +} 1.96 + 1.97 + 1.98 +/* 1.99 + * Initialize for a processing pass. 1.100 + */ 1.101 + 1.102 +METHODDEF(void) 1.103 +start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) 1.104 +{ 1.105 + my_coef_ptr coef = (my_coef_ptr) cinfo->coef; 1.106 + 1.107 + coef->iMCU_row_num = 0; 1.108 + start_iMCU_row(cinfo); 1.109 + 1.110 + switch (pass_mode) { 1.111 + case JBUF_PASS_THRU: 1.112 + if (coef->whole_image[0] != NULL) 1.113 + ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); 1.114 + coef->pub.compress_data = compress_data; 1.115 + break; 1.116 +#ifdef FULL_COEF_BUFFER_SUPPORTED 1.117 + case JBUF_SAVE_AND_PASS: 1.118 + if (coef->whole_image[0] == NULL) 1.119 + ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); 1.120 + coef->pub.compress_data = compress_first_pass; 1.121 + break; 1.122 + case JBUF_CRANK_DEST: 1.123 + if (coef->whole_image[0] == NULL) 1.124 + ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); 1.125 + coef->pub.compress_data = compress_output; 1.126 + break; 1.127 +#endif 1.128 + default: 1.129 + ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); 1.130 + break; 1.131 + } 1.132 +} 1.133 + 1.134 + 1.135 +/* 1.136 + * Process some data in the single-pass case. 1.137 + * We process the equivalent of one fully interleaved MCU row ("iMCU" row) 1.138 + * per call, ie, v_samp_factor block rows for each component in the image. 1.139 + * Returns TRUE if the iMCU row is completed, FALSE if suspended. 1.140 + * 1.141 + * NB: input_buf contains a plane for each component in image, 1.142 + * which we index according to the component's SOF position. 1.143 + */ 1.144 + 1.145 +METHODDEF(boolean) 1.146 +compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) 1.147 +{ 1.148 + my_coef_ptr coef = (my_coef_ptr) cinfo->coef; 1.149 + JDIMENSION MCU_col_num; /* index of current MCU within row */ 1.150 + JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; 1.151 + JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; 1.152 + int blkn, bi, ci, yindex, yoffset, blockcnt; 1.153 + JDIMENSION ypos, xpos; 1.154 + jpeg_component_info *compptr; 1.155 + 1.156 + /* Loop to write as much as one whole iMCU row */ 1.157 + for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; 1.158 + yoffset++) { 1.159 + for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col; 1.160 + MCU_col_num++) { 1.161 + /* Determine where data comes from in input_buf and do the DCT thing. 1.162 + * Each call on forward_DCT processes a horizontal row of DCT blocks 1.163 + * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks 1.164 + * sequentially. Dummy blocks at the right or bottom edge are filled in 1.165 + * specially. The data in them does not matter for image reconstruction, 1.166 + * so we fill them with values that will encode to the smallest amount of 1.167 + * data, viz: all zeroes in the AC entries, DC entries equal to previous 1.168 + * block's DC value. (Thanks to Thomas Kinsman for this idea.) 1.169 + */ 1.170 + blkn = 0; 1.171 + for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 1.172 + compptr = cinfo->cur_comp_info[ci]; 1.173 + blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width 1.174 + : compptr->last_col_width; 1.175 + xpos = MCU_col_num * compptr->MCU_sample_width; 1.176 + ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */ 1.177 + for (yindex = 0; yindex < compptr->MCU_height; yindex++) { 1.178 + if (coef->iMCU_row_num < last_iMCU_row || 1.179 + yoffset+yindex < compptr->last_row_height) { 1.180 + (*cinfo->fdct->forward_DCT) (cinfo, compptr, 1.181 + input_buf[compptr->component_index], 1.182 + coef->MCU_buffer[blkn], 1.183 + ypos, xpos, (JDIMENSION) blockcnt); 1.184 + if (blockcnt < compptr->MCU_width) { 1.185 + /* Create some dummy blocks at the right edge of the image. */ 1.186 + jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt], 1.187 + (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK)); 1.188 + for (bi = blockcnt; bi < compptr->MCU_width; bi++) { 1.189 + coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0]; 1.190 + } 1.191 + } 1.192 + } else { 1.193 + /* Create a row of dummy blocks at the bottom of the image. */ 1.194 + jzero_far((void FAR *) coef->MCU_buffer[blkn], 1.195 + compptr->MCU_width * SIZEOF(JBLOCK)); 1.196 + for (bi = 0; bi < compptr->MCU_width; bi++) { 1.197 + coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0]; 1.198 + } 1.199 + } 1.200 + blkn += compptr->MCU_width; 1.201 + ypos += DCTSIZE; 1.202 + } 1.203 + } 1.204 + /* Try to write the MCU. In event of a suspension failure, we will 1.205 + * re-DCT the MCU on restart (a bit inefficient, could be fixed...) 1.206 + */ 1.207 + if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { 1.208 + /* Suspension forced; update state counters and exit */ 1.209 + coef->MCU_vert_offset = yoffset; 1.210 + coef->mcu_ctr = MCU_col_num; 1.211 + return FALSE; 1.212 + } 1.213 + } 1.214 + /* Completed an MCU row, but perhaps not an iMCU row */ 1.215 + coef->mcu_ctr = 0; 1.216 + } 1.217 + /* Completed the iMCU row, advance counters for next one */ 1.218 + coef->iMCU_row_num++; 1.219 + start_iMCU_row(cinfo); 1.220 + return TRUE; 1.221 +} 1.222 + 1.223 + 1.224 +#ifdef FULL_COEF_BUFFER_SUPPORTED 1.225 + 1.226 +/* 1.227 + * Process some data in the first pass of a multi-pass case. 1.228 + * We process the equivalent of one fully interleaved MCU row ("iMCU" row) 1.229 + * per call, ie, v_samp_factor block rows for each component in the image. 1.230 + * This amount of data is read from the source buffer, DCT'd and quantized, 1.231 + * and saved into the virtual arrays. We also generate suitable dummy blocks 1.232 + * as needed at the right and lower edges. (The dummy blocks are constructed 1.233 + * in the virtual arrays, which have been padded appropriately.) This makes 1.234 + * it possible for subsequent passes not to worry about real vs. dummy blocks. 1.235 + * 1.236 + * We must also emit the data to the entropy encoder. This is conveniently 1.237 + * done by calling compress_output() after we've loaded the current strip 1.238 + * of the virtual arrays. 1.239 + * 1.240 + * NB: input_buf contains a plane for each component in image. All 1.241 + * components are DCT'd and loaded into the virtual arrays in this pass. 1.242 + * However, it may be that only a subset of the components are emitted to 1.243 + * the entropy encoder during this first pass; be careful about looking 1.244 + * at the scan-dependent variables (MCU dimensions, etc). 1.245 + */ 1.246 + 1.247 +METHODDEF(boolean) 1.248 +compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) 1.249 +{ 1.250 + my_coef_ptr coef = (my_coef_ptr) cinfo->coef; 1.251 + JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; 1.252 + JDIMENSION blocks_across, MCUs_across, MCUindex; 1.253 + int bi, ci, h_samp_factor, block_row, block_rows, ndummy; 1.254 + JCOEF lastDC; 1.255 + jpeg_component_info *compptr; 1.256 + JBLOCKARRAY buffer; 1.257 + JBLOCKROW thisblockrow, lastblockrow; 1.258 + 1.259 + for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 1.260 + ci++, compptr++) { 1.261 + /* Align the virtual buffer for this component. */ 1.262 + buffer = (*cinfo->mem->access_virt_barray) 1.263 + ((j_common_ptr) cinfo, coef->whole_image[ci], 1.264 + coef->iMCU_row_num * compptr->v_samp_factor, 1.265 + (JDIMENSION) compptr->v_samp_factor, TRUE); 1.266 + /* Count non-dummy DCT block rows in this iMCU row. */ 1.267 + if (coef->iMCU_row_num < last_iMCU_row) 1.268 + block_rows = compptr->v_samp_factor; 1.269 + else { 1.270 + /* NB: can't use last_row_height here, since may not be set! */ 1.271 + block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); 1.272 + if (block_rows == 0) block_rows = compptr->v_samp_factor; 1.273 + } 1.274 + blocks_across = compptr->width_in_blocks; 1.275 + h_samp_factor = compptr->h_samp_factor; 1.276 + /* Count number of dummy blocks to be added at the right margin. */ 1.277 + ndummy = (int) (blocks_across % h_samp_factor); 1.278 + if (ndummy > 0) 1.279 + ndummy = h_samp_factor - ndummy; 1.280 + /* Perform DCT for all non-dummy blocks in this iMCU row. Each call 1.281 + * on forward_DCT processes a complete horizontal row of DCT blocks. 1.282 + */ 1.283 + for (block_row = 0; block_row < block_rows; block_row++) { 1.284 + thisblockrow = buffer[block_row]; 1.285 + (*cinfo->fdct->forward_DCT) (cinfo, compptr, 1.286 + input_buf[ci], thisblockrow, 1.287 + (JDIMENSION) (block_row * DCTSIZE), 1.288 + (JDIMENSION) 0, blocks_across); 1.289 + if (ndummy > 0) { 1.290 + /* Create dummy blocks at the right edge of the image. */ 1.291 + thisblockrow += blocks_across; /* => first dummy block */ 1.292 + jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK)); 1.293 + lastDC = thisblockrow[-1][0]; 1.294 + for (bi = 0; bi < ndummy; bi++) { 1.295 + thisblockrow[bi][0] = lastDC; 1.296 + } 1.297 + } 1.298 + } 1.299 + /* If at end of image, create dummy block rows as needed. 1.300 + * The tricky part here is that within each MCU, we want the DC values 1.301 + * of the dummy blocks to match the last real block's DC value. 1.302 + * This squeezes a few more bytes out of the resulting file... 1.303 + */ 1.304 + if (coef->iMCU_row_num == last_iMCU_row) { 1.305 + blocks_across += ndummy; /* include lower right corner */ 1.306 + MCUs_across = blocks_across / h_samp_factor; 1.307 + for (block_row = block_rows; block_row < compptr->v_samp_factor; 1.308 + block_row++) { 1.309 + thisblockrow = buffer[block_row]; 1.310 + lastblockrow = buffer[block_row-1]; 1.311 + jzero_far((void FAR *) thisblockrow, 1.312 + (size_t) (blocks_across * SIZEOF(JBLOCK))); 1.313 + for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { 1.314 + lastDC = lastblockrow[h_samp_factor-1][0]; 1.315 + for (bi = 0; bi < h_samp_factor; bi++) { 1.316 + thisblockrow[bi][0] = lastDC; 1.317 + } 1.318 + thisblockrow += h_samp_factor; /* advance to next MCU in row */ 1.319 + lastblockrow += h_samp_factor; 1.320 + } 1.321 + } 1.322 + } 1.323 + } 1.324 + /* NB: compress_output will increment iMCU_row_num if successful. 1.325 + * A suspension return will result in redoing all the work above next time. 1.326 + */ 1.327 + 1.328 + /* Emit data to the entropy encoder, sharing code with subsequent passes */ 1.329 + return compress_output(cinfo, input_buf); 1.330 +} 1.331 + 1.332 + 1.333 +/* 1.334 + * Process some data in subsequent passes of a multi-pass case. 1.335 + * We process the equivalent of one fully interleaved MCU row ("iMCU" row) 1.336 + * per call, ie, v_samp_factor block rows for each component in the scan. 1.337 + * The data is obtained from the virtual arrays and fed to the entropy coder. 1.338 + * Returns TRUE if the iMCU row is completed, FALSE if suspended. 1.339 + * 1.340 + * NB: input_buf is ignored; it is likely to be a NULL pointer. 1.341 + */ 1.342 + 1.343 +METHODDEF(boolean) 1.344 +compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) 1.345 +{ 1.346 + my_coef_ptr coef = (my_coef_ptr) cinfo->coef; 1.347 + JDIMENSION MCU_col_num; /* index of current MCU within row */ 1.348 + int blkn, ci, xindex, yindex, yoffset; 1.349 + JDIMENSION start_col; 1.350 + JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; 1.351 + JBLOCKROW buffer_ptr; 1.352 + jpeg_component_info *compptr; 1.353 + 1.354 + /* Align the virtual buffers for the components used in this scan. 1.355 + * NB: during first pass, this is safe only because the buffers will 1.356 + * already be aligned properly, so jmemmgr.c won't need to do any I/O. 1.357 + */ 1.358 + for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 1.359 + compptr = cinfo->cur_comp_info[ci]; 1.360 + buffer[ci] = (*cinfo->mem->access_virt_barray) 1.361 + ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], 1.362 + coef->iMCU_row_num * compptr->v_samp_factor, 1.363 + (JDIMENSION) compptr->v_samp_factor, FALSE); 1.364 + } 1.365 + 1.366 + /* Loop to process one whole iMCU row */ 1.367 + for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; 1.368 + yoffset++) { 1.369 + for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; 1.370 + MCU_col_num++) { 1.371 + /* Construct list of pointers to DCT blocks belonging to this MCU */ 1.372 + blkn = 0; /* index of current DCT block within MCU */ 1.373 + for (ci = 0; ci < cinfo->comps_in_scan; ci++) { 1.374 + compptr = cinfo->cur_comp_info[ci]; 1.375 + start_col = MCU_col_num * compptr->MCU_width; 1.376 + for (yindex = 0; yindex < compptr->MCU_height; yindex++) { 1.377 + buffer_ptr = buffer[ci][yindex+yoffset] + start_col; 1.378 + for (xindex = 0; xindex < compptr->MCU_width; xindex++) { 1.379 + coef->MCU_buffer[blkn++] = buffer_ptr++; 1.380 + } 1.381 + } 1.382 + } 1.383 + /* Try to write the MCU. */ 1.384 + if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { 1.385 + /* Suspension forced; update state counters and exit */ 1.386 + coef->MCU_vert_offset = yoffset; 1.387 + coef->mcu_ctr = MCU_col_num; 1.388 + return FALSE; 1.389 + } 1.390 + } 1.391 + /* Completed an MCU row, but perhaps not an iMCU row */ 1.392 + coef->mcu_ctr = 0; 1.393 + } 1.394 + /* Completed the iMCU row, advance counters for next one */ 1.395 + coef->iMCU_row_num++; 1.396 + start_iMCU_row(cinfo); 1.397 + return TRUE; 1.398 +} 1.399 + 1.400 +#endif /* FULL_COEF_BUFFER_SUPPORTED */ 1.401 + 1.402 + 1.403 +/* 1.404 + * Initialize coefficient buffer controller. 1.405 + */ 1.406 + 1.407 +GLOBAL(void) 1.408 +jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer) 1.409 +{ 1.410 + my_coef_ptr coef; 1.411 + 1.412 + coef = (my_coef_ptr) 1.413 + (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.414 + SIZEOF(my_coef_controller)); 1.415 + cinfo->coef = (struct jpeg_c_coef_controller *) coef; 1.416 + coef->pub.start_pass = start_pass_coef; 1.417 + 1.418 + /* Create the coefficient buffer. */ 1.419 + if (need_full_buffer) { 1.420 +#ifdef FULL_COEF_BUFFER_SUPPORTED 1.421 + /* Allocate a full-image virtual array for each component, */ 1.422 + /* padded to a multiple of samp_factor DCT blocks in each direction. */ 1.423 + int ci; 1.424 + jpeg_component_info *compptr; 1.425 + 1.426 + for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; 1.427 + ci++, compptr++) { 1.428 + coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) 1.429 + ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, 1.430 + (JDIMENSION) jround_up((long) compptr->width_in_blocks, 1.431 + (long) compptr->h_samp_factor), 1.432 + (JDIMENSION) jround_up((long) compptr->height_in_blocks, 1.433 + (long) compptr->v_samp_factor), 1.434 + (JDIMENSION) compptr->v_samp_factor); 1.435 + } 1.436 +#else 1.437 + ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); 1.438 +#endif 1.439 + } else { 1.440 + /* We only need a single-MCU buffer. */ 1.441 + JBLOCKROW buffer; 1.442 + int i; 1.443 + 1.444 + buffer = (JBLOCKROW) 1.445 + (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1.446 + C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); 1.447 + for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { 1.448 + coef->MCU_buffer[i] = buffer + i; 1.449 + } 1.450 + coef->whole_image[0] = NULL; /* flag for no virtual arrays */ 1.451 + } 1.452 +}