rev |
line source |
nuclear@10
|
1 /*
|
nuclear@10
|
2 libvmath - a vector math library
|
nuclear@10
|
3 Copyright (C) 2004-2015 John Tsiombikas <nuclear@member.fsf.org>
|
nuclear@10
|
4
|
nuclear@10
|
5 This program is free software: you can redistribute it and/or modify
|
nuclear@10
|
6 it under the terms of the GNU Lesser General Public License as published
|
nuclear@10
|
7 by the Free Software Foundation, either version 3 of the License, or
|
nuclear@10
|
8 (at your option) any later version.
|
nuclear@10
|
9
|
nuclear@10
|
10 This program is distributed in the hope that it will be useful,
|
nuclear@10
|
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
|
nuclear@10
|
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
nuclear@10
|
13 GNU Lesser General Public License for more details.
|
nuclear@10
|
14
|
nuclear@10
|
15 You should have received a copy of the GNU Lesser General Public License
|
nuclear@10
|
16 along with this program. If not, see <http://www.gnu.org/licenses/>.
|
nuclear@10
|
17 */
|
nuclear@10
|
18 #include "vector.h"
|
nuclear@10
|
19 #include "vmath.h"
|
nuclear@10
|
20
|
nuclear@10
|
21 // ---------- Vector2 -----------
|
nuclear@10
|
22
|
nuclear@10
|
23 Vector2::Vector2(scalar_t x, scalar_t y)
|
nuclear@10
|
24 {
|
nuclear@10
|
25 this->x = x;
|
nuclear@10
|
26 this->y = y;
|
nuclear@10
|
27 }
|
nuclear@10
|
28
|
nuclear@10
|
29 Vector2::Vector2(const vec2_t &vec)
|
nuclear@10
|
30 {
|
nuclear@10
|
31 x = vec.x;
|
nuclear@10
|
32 y = vec.y;
|
nuclear@10
|
33 }
|
nuclear@10
|
34
|
nuclear@10
|
35 Vector2::Vector2(const Vector3 &vec)
|
nuclear@10
|
36 {
|
nuclear@10
|
37 x = vec.x;
|
nuclear@10
|
38 y = vec.y;
|
nuclear@10
|
39 }
|
nuclear@10
|
40
|
nuclear@10
|
41 Vector2::Vector2(const Vector4 &vec)
|
nuclear@10
|
42 {
|
nuclear@10
|
43 x = vec.x;
|
nuclear@10
|
44 y = vec.y;
|
nuclear@10
|
45 }
|
nuclear@10
|
46
|
nuclear@10
|
47 void Vector2::normalize()
|
nuclear@10
|
48 {
|
nuclear@10
|
49 scalar_t len = length();
|
nuclear@10
|
50 x /= len;
|
nuclear@10
|
51 y /= len;
|
nuclear@10
|
52 }
|
nuclear@10
|
53
|
nuclear@10
|
54 Vector2 Vector2::normalized() const
|
nuclear@10
|
55 {
|
nuclear@10
|
56 scalar_t len = length();
|
nuclear@10
|
57 return Vector2(x / len, y / len);
|
nuclear@10
|
58 }
|
nuclear@10
|
59
|
nuclear@10
|
60 void Vector2::transform(const Matrix3x3 &mat)
|
nuclear@10
|
61 {
|
nuclear@10
|
62 scalar_t nx = mat[0][0] * x + mat[0][1] * y + mat[0][2];
|
nuclear@10
|
63 y = mat[1][0] * x + mat[1][1] * y + mat[1][2];
|
nuclear@10
|
64 x = nx;
|
nuclear@10
|
65 }
|
nuclear@10
|
66
|
nuclear@10
|
67 Vector2 Vector2::transformed(const Matrix3x3 &mat) const
|
nuclear@10
|
68 {
|
nuclear@10
|
69 Vector2 vec;
|
nuclear@10
|
70 vec.x = mat[0][0] * x + mat[0][1] * y + mat[0][2];
|
nuclear@10
|
71 vec.y = mat[1][0] * x + mat[1][1] * y + mat[1][2];
|
nuclear@10
|
72 return vec;
|
nuclear@10
|
73 }
|
nuclear@10
|
74
|
nuclear@10
|
75 void Vector2::rotate(scalar_t angle)
|
nuclear@10
|
76 {
|
nuclear@10
|
77 *this = Vector2(cos(angle) * x - sin(angle) * y, sin(angle) * x + cos(angle) * y);
|
nuclear@10
|
78 }
|
nuclear@10
|
79
|
nuclear@10
|
80 Vector2 Vector2::rotated(scalar_t angle) const
|
nuclear@10
|
81 {
|
nuclear@10
|
82 return Vector2(cos(angle) * x - sin(angle) * y, sin(angle) * x + cos(angle) * y);
|
nuclear@10
|
83 }
|
nuclear@10
|
84
|
nuclear@10
|
85 Vector2 Vector2::reflection(const Vector2 &normal) const
|
nuclear@10
|
86 {
|
nuclear@10
|
87 return 2.0 * dot_product(*this, normal) * normal - *this;
|
nuclear@10
|
88 }
|
nuclear@10
|
89
|
nuclear@10
|
90 Vector2 Vector2::refraction(const Vector2 &normal, scalar_t src_ior, scalar_t dst_ior) const
|
nuclear@10
|
91 {
|
nuclear@10
|
92 // quick and dirty implementation :)
|
nuclear@10
|
93 Vector3 v3refr = Vector3(this->x, this->y, 1.0).refraction(Vector3(this->x, this->y, 1), src_ior, dst_ior);
|
nuclear@10
|
94 return Vector2(v3refr.x, v3refr.y);
|
nuclear@10
|
95 }
|
nuclear@10
|
96
|
nuclear@10
|
97 /*
|
nuclear@10
|
98 std::ostream &operator <<(std::ostream &out, const Vector2 &vec)
|
nuclear@10
|
99 {
|
nuclear@10
|
100 out << "[" << vec.x << " " << vec.y << "]";
|
nuclear@10
|
101 return out;
|
nuclear@10
|
102 }
|
nuclear@10
|
103 */
|
nuclear@10
|
104
|
nuclear@10
|
105
|
nuclear@10
|
106 // --------- Vector3 ----------
|
nuclear@10
|
107
|
nuclear@10
|
108 Vector3::Vector3(scalar_t x, scalar_t y, scalar_t z)
|
nuclear@10
|
109 {
|
nuclear@10
|
110 this->x = x;
|
nuclear@10
|
111 this->y = y;
|
nuclear@10
|
112 this->z = z;
|
nuclear@10
|
113 }
|
nuclear@10
|
114
|
nuclear@10
|
115 Vector3::Vector3(const vec3_t &vec)
|
nuclear@10
|
116 {
|
nuclear@10
|
117 x = vec.x;
|
nuclear@10
|
118 y = vec.y;
|
nuclear@10
|
119 z = vec.z;
|
nuclear@10
|
120 }
|
nuclear@10
|
121
|
nuclear@10
|
122 Vector3::Vector3(const Vector2 &vec)
|
nuclear@10
|
123 {
|
nuclear@10
|
124 x = vec.x;
|
nuclear@10
|
125 y = vec.y;
|
nuclear@10
|
126 z = 1;
|
nuclear@10
|
127 }
|
nuclear@10
|
128
|
nuclear@10
|
129 Vector3::Vector3(const Vector4 &vec)
|
nuclear@10
|
130 {
|
nuclear@10
|
131 x = vec.x;
|
nuclear@10
|
132 y = vec.y;
|
nuclear@10
|
133 z = vec.z;
|
nuclear@10
|
134 }
|
nuclear@10
|
135
|
nuclear@10
|
136 Vector3::Vector3(const SphVector &sph)
|
nuclear@10
|
137 {
|
nuclear@10
|
138 *this = sph;
|
nuclear@10
|
139 }
|
nuclear@10
|
140
|
nuclear@10
|
141 Vector3 &Vector3::operator =(const SphVector &sph)
|
nuclear@10
|
142 {
|
nuclear@10
|
143 x = sph.r * cos(sph.theta) * sin(sph.phi);
|
nuclear@10
|
144 z = sph.r * sin(sph.theta) * sin(sph.phi);
|
nuclear@10
|
145 y = sph.r * cos(sph.phi);
|
nuclear@10
|
146 return *this;
|
nuclear@10
|
147 }
|
nuclear@10
|
148
|
nuclear@10
|
149 void Vector3::normalize()
|
nuclear@10
|
150 {
|
nuclear@10
|
151 scalar_t len = length();
|
nuclear@10
|
152 x /= len;
|
nuclear@10
|
153 y /= len;
|
nuclear@10
|
154 z /= len;
|
nuclear@10
|
155 }
|
nuclear@10
|
156
|
nuclear@10
|
157 Vector3 Vector3::normalized() const
|
nuclear@10
|
158 {
|
nuclear@10
|
159 scalar_t len = length();
|
nuclear@10
|
160 return Vector3(x / len, y / len, z / len);
|
nuclear@10
|
161 }
|
nuclear@10
|
162
|
nuclear@10
|
163 Vector3 Vector3::reflection(const Vector3 &normal) const
|
nuclear@10
|
164 {
|
nuclear@10
|
165 return 2.0 * dot_product(*this, normal) * normal - *this;
|
nuclear@10
|
166 }
|
nuclear@10
|
167
|
nuclear@10
|
168 Vector3 Vector3::refraction(const Vector3 &normal, scalar_t src_ior, scalar_t dst_ior) const
|
nuclear@10
|
169 {
|
nuclear@10
|
170 return refraction(normal, src_ior / dst_ior);
|
nuclear@10
|
171 }
|
nuclear@10
|
172
|
nuclear@10
|
173 Vector3 Vector3::refraction(const Vector3 &normal, scalar_t ior) const
|
nuclear@10
|
174 {
|
nuclear@10
|
175 scalar_t cos_inc = dot_product(*this, -normal);
|
nuclear@10
|
176
|
nuclear@10
|
177 scalar_t radical = 1.0 + SQ(ior) * (SQ(cos_inc) - 1.0);
|
nuclear@10
|
178
|
nuclear@10
|
179 if(radical < 0.0) { // total internal reflection
|
nuclear@10
|
180 return -reflection(normal);
|
nuclear@10
|
181 }
|
nuclear@10
|
182
|
nuclear@10
|
183 scalar_t beta = ior * cos_inc - sqrt(radical);
|
nuclear@10
|
184
|
nuclear@10
|
185 return *this * ior + normal * beta;
|
nuclear@10
|
186 }
|
nuclear@10
|
187
|
nuclear@10
|
188 void Vector3::transform(const Matrix3x3 &mat)
|
nuclear@10
|
189 {
|
nuclear@10
|
190 scalar_t nx = mat[0][0] * x + mat[0][1] * y + mat[0][2] * z;
|
nuclear@10
|
191 scalar_t ny = mat[1][0] * x + mat[1][1] * y + mat[1][2] * z;
|
nuclear@10
|
192 z = mat[2][0] * x + mat[2][1] * y + mat[2][2] * z;
|
nuclear@10
|
193 x = nx;
|
nuclear@10
|
194 y = ny;
|
nuclear@10
|
195 }
|
nuclear@10
|
196
|
nuclear@10
|
197 Vector3 Vector3::transformed(const Matrix3x3 &mat) const
|
nuclear@10
|
198 {
|
nuclear@10
|
199 Vector3 vec;
|
nuclear@10
|
200 vec.x = mat[0][0] * x + mat[0][1] * y + mat[0][2] * z;
|
nuclear@10
|
201 vec.y = mat[1][0] * x + mat[1][1] * y + mat[1][2] * z;
|
nuclear@10
|
202 vec.z = mat[2][0] * x + mat[2][1] * y + mat[2][2] * z;
|
nuclear@10
|
203 return vec;
|
nuclear@10
|
204 }
|
nuclear@10
|
205
|
nuclear@10
|
206 void Vector3::transform(const Matrix4x4 &mat)
|
nuclear@10
|
207 {
|
nuclear@10
|
208 scalar_t nx = mat[0][0] * x + mat[0][1] * y + mat[0][2] * z + mat[0][3];
|
nuclear@10
|
209 scalar_t ny = mat[1][0] * x + mat[1][1] * y + mat[1][2] * z + mat[1][3];
|
nuclear@10
|
210 z = mat[2][0] * x + mat[2][1] * y + mat[2][2] * z + mat[2][3];
|
nuclear@10
|
211 x = nx;
|
nuclear@10
|
212 y = ny;
|
nuclear@10
|
213 }
|
nuclear@10
|
214
|
nuclear@10
|
215 Vector3 Vector3::transformed(const Matrix4x4 &mat) const
|
nuclear@10
|
216 {
|
nuclear@10
|
217 Vector3 vec;
|
nuclear@10
|
218 vec.x = mat[0][0] * x + mat[0][1] * y + mat[0][2] * z + mat[0][3];
|
nuclear@10
|
219 vec.y = mat[1][0] * x + mat[1][1] * y + mat[1][2] * z + mat[1][3];
|
nuclear@10
|
220 vec.z = mat[2][0] * x + mat[2][1] * y + mat[2][2] * z + mat[2][3];
|
nuclear@10
|
221 return vec;
|
nuclear@10
|
222 }
|
nuclear@10
|
223
|
nuclear@10
|
224 void Vector3::transform(const Quaternion &quat)
|
nuclear@10
|
225 {
|
nuclear@10
|
226 Quaternion vq(0.0f, *this);
|
nuclear@10
|
227 vq = quat * vq * quat.inverse();
|
nuclear@10
|
228 *this = vq.v;
|
nuclear@10
|
229 }
|
nuclear@10
|
230
|
nuclear@10
|
231 Vector3 Vector3::transformed(const Quaternion &quat) const
|
nuclear@10
|
232 {
|
nuclear@10
|
233 Quaternion vq(0.0f, *this);
|
nuclear@10
|
234 vq = quat * vq * quat.inverse();
|
nuclear@10
|
235 return vq.v;
|
nuclear@10
|
236 }
|
nuclear@10
|
237
|
nuclear@10
|
238 void Vector3::rotate(const Vector3 &euler)
|
nuclear@10
|
239 {
|
nuclear@10
|
240 Matrix4x4 rot;
|
nuclear@10
|
241 rot.set_rotation(euler);
|
nuclear@10
|
242 transform(rot);
|
nuclear@10
|
243 }
|
nuclear@10
|
244
|
nuclear@10
|
245 Vector3 Vector3::rotated(const Vector3 &euler) const
|
nuclear@10
|
246 {
|
nuclear@10
|
247 Matrix4x4 rot;
|
nuclear@10
|
248 rot.set_rotation(euler);
|
nuclear@10
|
249 return transformed(rot);
|
nuclear@10
|
250 }
|
nuclear@10
|
251
|
nuclear@10
|
252 /*
|
nuclear@10
|
253 std::ostream &operator <<(std::ostream &out, const Vector3 &vec)
|
nuclear@10
|
254 {
|
nuclear@10
|
255 out << "[" << vec.x << " " << vec.y << " " << vec.z << "]";
|
nuclear@10
|
256 return out;
|
nuclear@10
|
257 }
|
nuclear@10
|
258 */
|
nuclear@10
|
259
|
nuclear@10
|
260
|
nuclear@10
|
261 // -------------- Vector4 --------------
|
nuclear@10
|
262 Vector4::Vector4(scalar_t x, scalar_t y, scalar_t z, scalar_t w)
|
nuclear@10
|
263 {
|
nuclear@10
|
264 this->x = x;
|
nuclear@10
|
265 this->y = y;
|
nuclear@10
|
266 this->z = z;
|
nuclear@10
|
267 this->w = w;
|
nuclear@10
|
268 }
|
nuclear@10
|
269
|
nuclear@10
|
270 Vector4::Vector4(const vec4_t &vec)
|
nuclear@10
|
271 {
|
nuclear@10
|
272 x = vec.x;
|
nuclear@10
|
273 y = vec.y;
|
nuclear@10
|
274 z = vec.z;
|
nuclear@10
|
275 w = vec.w;
|
nuclear@10
|
276 }
|
nuclear@10
|
277
|
nuclear@10
|
278 Vector4::Vector4(const Vector2 &vec)
|
nuclear@10
|
279 {
|
nuclear@10
|
280 x = vec.x;
|
nuclear@10
|
281 y = vec.y;
|
nuclear@10
|
282 z = 1;
|
nuclear@10
|
283 w = 1;
|
nuclear@10
|
284 }
|
nuclear@10
|
285
|
nuclear@10
|
286 Vector4::Vector4(const Vector3 &vec)
|
nuclear@10
|
287 {
|
nuclear@10
|
288 x = vec.x;
|
nuclear@10
|
289 y = vec.y;
|
nuclear@10
|
290 z = vec.z;
|
nuclear@10
|
291 w = 1;
|
nuclear@10
|
292 }
|
nuclear@10
|
293
|
nuclear@10
|
294 void Vector4::normalize()
|
nuclear@10
|
295 {
|
nuclear@10
|
296 scalar_t len = (scalar_t)sqrt(x*x + y*y + z*z + w*w);
|
nuclear@10
|
297 x /= len;
|
nuclear@10
|
298 y /= len;
|
nuclear@10
|
299 z /= len;
|
nuclear@10
|
300 w /= len;
|
nuclear@10
|
301 }
|
nuclear@10
|
302
|
nuclear@10
|
303 Vector4 Vector4::normalized() const
|
nuclear@10
|
304 {
|
nuclear@10
|
305 scalar_t len = (scalar_t)sqrt(x*x + y*y + z*z + w*w);
|
nuclear@10
|
306 return Vector4(x / len, y / len, z / len, w / len);
|
nuclear@10
|
307 }
|
nuclear@10
|
308
|
nuclear@10
|
309 void Vector4::transform(const Matrix4x4 &mat)
|
nuclear@10
|
310 {
|
nuclear@10
|
311 scalar_t nx = mat[0][0] * x + mat[0][1] * y + mat[0][2] * z + mat[0][3] * w;
|
nuclear@10
|
312 scalar_t ny = mat[1][0] * x + mat[1][1] * y + mat[1][2] * z + mat[1][3] * w;
|
nuclear@10
|
313 scalar_t nz = mat[2][0] * x + mat[2][1] * y + mat[2][2] * z + mat[2][3] * w;
|
nuclear@10
|
314 w = mat[3][0] * x + mat[3][1] * y + mat[3][2] * z + mat[3][3] * w;
|
nuclear@10
|
315 x = nx;
|
nuclear@10
|
316 y = ny;
|
nuclear@10
|
317 z = nz;
|
nuclear@10
|
318 }
|
nuclear@10
|
319
|
nuclear@10
|
320 Vector4 Vector4::transformed(const Matrix4x4 &mat) const
|
nuclear@10
|
321 {
|
nuclear@10
|
322 Vector4 vec;
|
nuclear@10
|
323 vec.x = mat[0][0] * x + mat[0][1] * y + mat[0][2] * z + mat[0][3] * w;
|
nuclear@10
|
324 vec.y = mat[1][0] * x + mat[1][1] * y + mat[1][2] * z + mat[1][3] * w;
|
nuclear@10
|
325 vec.z = mat[2][0] * x + mat[2][1] * y + mat[2][2] * z + mat[2][3] * w;
|
nuclear@10
|
326 vec.w = mat[3][0] * x + mat[3][1] * y + mat[3][2] * z + mat[3][3] * w;
|
nuclear@10
|
327 return vec;
|
nuclear@10
|
328 }
|
nuclear@10
|
329
|
nuclear@10
|
330 // TODO: implement 4D vector reflection
|
nuclear@10
|
331 Vector4 Vector4::reflection(const Vector4 &normal) const
|
nuclear@10
|
332 {
|
nuclear@10
|
333 return *this;
|
nuclear@10
|
334 }
|
nuclear@10
|
335
|
nuclear@10
|
336 // TODO: implement 4D vector refraction
|
nuclear@10
|
337 Vector4 Vector4::refraction(const Vector4 &normal, scalar_t src_ior, scalar_t dst_ior) const
|
nuclear@10
|
338 {
|
nuclear@10
|
339 return *this;
|
nuclear@10
|
340 }
|
nuclear@10
|
341
|
nuclear@10
|
342 /*
|
nuclear@10
|
343 std::ostream &operator <<(std::ostream &out, const Vector4 &vec)
|
nuclear@10
|
344 {
|
nuclear@10
|
345 out << "[" << vec.x << " " << vec.y << " " << vec.z << " " << vec.w << "]";
|
nuclear@10
|
346 return out;
|
nuclear@10
|
347 }
|
nuclear@10
|
348 */
|