3dphotoshoot

annotate libs/libjpeg/jmemmgr.c @ 27:3d082c566b53

fixed all the bugs, pc version works
author John Tsiombikas <nuclear@member.fsf.org>
date Thu, 18 Jun 2015 04:32:25 +0300
parents
children
rev   line source
nuclear@14 1 /*
nuclear@14 2 * jmemmgr.c
nuclear@14 3 *
nuclear@14 4 * Copyright (C) 1991-1997, Thomas G. Lane.
nuclear@14 5 * This file is part of the Independent JPEG Group's software.
nuclear@14 6 * For conditions of distribution and use, see the accompanying README file.
nuclear@14 7 *
nuclear@14 8 * This file contains the JPEG system-independent memory management
nuclear@14 9 * routines. This code is usable across a wide variety of machines; most
nuclear@14 10 * of the system dependencies have been isolated in a separate file.
nuclear@14 11 * The major functions provided here are:
nuclear@14 12 * * pool-based allocation and freeing of memory;
nuclear@14 13 * * policy decisions about how to divide available memory among the
nuclear@14 14 * virtual arrays;
nuclear@14 15 * * control logic for swapping virtual arrays between main memory and
nuclear@14 16 * backing storage.
nuclear@14 17 * The separate system-dependent file provides the actual backing-storage
nuclear@14 18 * access code, and it contains the policy decision about how much total
nuclear@14 19 * main memory to use.
nuclear@14 20 * This file is system-dependent in the sense that some of its functions
nuclear@14 21 * are unnecessary in some systems. For example, if there is enough virtual
nuclear@14 22 * memory so that backing storage will never be used, much of the virtual
nuclear@14 23 * array control logic could be removed. (Of course, if you have that much
nuclear@14 24 * memory then you shouldn't care about a little bit of unused code...)
nuclear@14 25 */
nuclear@14 26
nuclear@14 27 #define JPEG_INTERNALS
nuclear@14 28 #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
nuclear@14 29 #include "jinclude.h"
nuclear@14 30 #include "jpeglib.h"
nuclear@14 31 #include "jmemsys.h" /* import the system-dependent declarations */
nuclear@14 32
nuclear@14 33 #ifndef NO_GETENV
nuclear@14 34 #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
nuclear@14 35 extern char * getenv JPP((const char * name));
nuclear@14 36 #endif
nuclear@14 37 #endif
nuclear@14 38
nuclear@14 39
nuclear@14 40 /*
nuclear@14 41 * Some important notes:
nuclear@14 42 * The allocation routines provided here must never return NULL.
nuclear@14 43 * They should exit to error_exit if unsuccessful.
nuclear@14 44 *
nuclear@14 45 * It's not a good idea to try to merge the sarray and barray routines,
nuclear@14 46 * even though they are textually almost the same, because samples are
nuclear@14 47 * usually stored as bytes while coefficients are shorts or ints. Thus,
nuclear@14 48 * in machines where byte pointers have a different representation from
nuclear@14 49 * word pointers, the resulting machine code could not be the same.
nuclear@14 50 */
nuclear@14 51
nuclear@14 52
nuclear@14 53 /*
nuclear@14 54 * Many machines require storage alignment: longs must start on 4-byte
nuclear@14 55 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
nuclear@14 56 * always returns pointers that are multiples of the worst-case alignment
nuclear@14 57 * requirement, and we had better do so too.
nuclear@14 58 * There isn't any really portable way to determine the worst-case alignment
nuclear@14 59 * requirement. This module assumes that the alignment requirement is
nuclear@14 60 * multiples of sizeof(ALIGN_TYPE).
nuclear@14 61 * By default, we define ALIGN_TYPE as double. This is necessary on some
nuclear@14 62 * workstations (where doubles really do need 8-byte alignment) and will work
nuclear@14 63 * fine on nearly everything. If your machine has lesser alignment needs,
nuclear@14 64 * you can save a few bytes by making ALIGN_TYPE smaller.
nuclear@14 65 * The only place I know of where this will NOT work is certain Macintosh
nuclear@14 66 * 680x0 compilers that define double as a 10-byte IEEE extended float.
nuclear@14 67 * Doing 10-byte alignment is counterproductive because longwords won't be
nuclear@14 68 * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
nuclear@14 69 * such a compiler.
nuclear@14 70 */
nuclear@14 71
nuclear@14 72 #ifndef ALIGN_TYPE /* so can override from jconfig.h */
nuclear@14 73 #define ALIGN_TYPE double
nuclear@14 74 #endif
nuclear@14 75
nuclear@14 76
nuclear@14 77 /*
nuclear@14 78 * We allocate objects from "pools", where each pool is gotten with a single
nuclear@14 79 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
nuclear@14 80 * overhead within a pool, except for alignment padding. Each pool has a
nuclear@14 81 * header with a link to the next pool of the same class.
nuclear@14 82 * Small and large pool headers are identical except that the latter's
nuclear@14 83 * link pointer must be FAR on 80x86 machines.
nuclear@14 84 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
nuclear@14 85 * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
nuclear@14 86 * of the alignment requirement of ALIGN_TYPE.
nuclear@14 87 */
nuclear@14 88
nuclear@14 89 typedef union small_pool_struct * small_pool_ptr;
nuclear@14 90
nuclear@14 91 typedef union small_pool_struct {
nuclear@14 92 struct {
nuclear@14 93 small_pool_ptr next; /* next in list of pools */
nuclear@14 94 size_t bytes_used; /* how many bytes already used within pool */
nuclear@14 95 size_t bytes_left; /* bytes still available in this pool */
nuclear@14 96 } hdr;
nuclear@14 97 ALIGN_TYPE dummy; /* included in union to ensure alignment */
nuclear@14 98 } small_pool_hdr;
nuclear@14 99
nuclear@14 100 typedef union large_pool_struct FAR * large_pool_ptr;
nuclear@14 101
nuclear@14 102 typedef union large_pool_struct {
nuclear@14 103 struct {
nuclear@14 104 large_pool_ptr next; /* next in list of pools */
nuclear@14 105 size_t bytes_used; /* how many bytes already used within pool */
nuclear@14 106 size_t bytes_left; /* bytes still available in this pool */
nuclear@14 107 } hdr;
nuclear@14 108 ALIGN_TYPE dummy; /* included in union to ensure alignment */
nuclear@14 109 } large_pool_hdr;
nuclear@14 110
nuclear@14 111
nuclear@14 112 /*
nuclear@14 113 * Here is the full definition of a memory manager object.
nuclear@14 114 */
nuclear@14 115
nuclear@14 116 typedef struct {
nuclear@14 117 struct jpeg_memory_mgr pub; /* public fields */
nuclear@14 118
nuclear@14 119 /* Each pool identifier (lifetime class) names a linked list of pools. */
nuclear@14 120 small_pool_ptr small_list[JPOOL_NUMPOOLS];
nuclear@14 121 large_pool_ptr large_list[JPOOL_NUMPOOLS];
nuclear@14 122
nuclear@14 123 /* Since we only have one lifetime class of virtual arrays, only one
nuclear@14 124 * linked list is necessary (for each datatype). Note that the virtual
nuclear@14 125 * array control blocks being linked together are actually stored somewhere
nuclear@14 126 * in the small-pool list.
nuclear@14 127 */
nuclear@14 128 jvirt_sarray_ptr virt_sarray_list;
nuclear@14 129 jvirt_barray_ptr virt_barray_list;
nuclear@14 130
nuclear@14 131 /* This counts total space obtained from jpeg_get_small/large */
nuclear@14 132 long total_space_allocated;
nuclear@14 133
nuclear@14 134 /* alloc_sarray and alloc_barray set this value for use by virtual
nuclear@14 135 * array routines.
nuclear@14 136 */
nuclear@14 137 JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
nuclear@14 138 } my_memory_mgr;
nuclear@14 139
nuclear@14 140 typedef my_memory_mgr * my_mem_ptr;
nuclear@14 141
nuclear@14 142
nuclear@14 143 /*
nuclear@14 144 * The control blocks for virtual arrays.
nuclear@14 145 * Note that these blocks are allocated in the "small" pool area.
nuclear@14 146 * System-dependent info for the associated backing store (if any) is hidden
nuclear@14 147 * inside the backing_store_info struct.
nuclear@14 148 */
nuclear@14 149
nuclear@14 150 struct jvirt_sarray_control {
nuclear@14 151 JSAMPARRAY mem_buffer; /* => the in-memory buffer */
nuclear@14 152 JDIMENSION rows_in_array; /* total virtual array height */
nuclear@14 153 JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
nuclear@14 154 JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
nuclear@14 155 JDIMENSION rows_in_mem; /* height of memory buffer */
nuclear@14 156 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
nuclear@14 157 JDIMENSION cur_start_row; /* first logical row # in the buffer */
nuclear@14 158 JDIMENSION first_undef_row; /* row # of first uninitialized row */
nuclear@14 159 boolean pre_zero; /* pre-zero mode requested? */
nuclear@14 160 boolean dirty; /* do current buffer contents need written? */
nuclear@14 161 boolean b_s_open; /* is backing-store data valid? */
nuclear@14 162 jvirt_sarray_ptr next; /* link to next virtual sarray control block */
nuclear@14 163 backing_store_info b_s_info; /* System-dependent control info */
nuclear@14 164 };
nuclear@14 165
nuclear@14 166 struct jvirt_barray_control {
nuclear@14 167 JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
nuclear@14 168 JDIMENSION rows_in_array; /* total virtual array height */
nuclear@14 169 JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
nuclear@14 170 JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
nuclear@14 171 JDIMENSION rows_in_mem; /* height of memory buffer */
nuclear@14 172 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
nuclear@14 173 JDIMENSION cur_start_row; /* first logical row # in the buffer */
nuclear@14 174 JDIMENSION first_undef_row; /* row # of first uninitialized row */
nuclear@14 175 boolean pre_zero; /* pre-zero mode requested? */
nuclear@14 176 boolean dirty; /* do current buffer contents need written? */
nuclear@14 177 boolean b_s_open; /* is backing-store data valid? */
nuclear@14 178 jvirt_barray_ptr next; /* link to next virtual barray control block */
nuclear@14 179 backing_store_info b_s_info; /* System-dependent control info */
nuclear@14 180 };
nuclear@14 181
nuclear@14 182
nuclear@14 183 #ifdef MEM_STATS /* optional extra stuff for statistics */
nuclear@14 184
nuclear@14 185 LOCAL(void)
nuclear@14 186 print_mem_stats (j_common_ptr cinfo, int pool_id)
nuclear@14 187 {
nuclear@14 188 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
nuclear@14 189 small_pool_ptr shdr_ptr;
nuclear@14 190 large_pool_ptr lhdr_ptr;
nuclear@14 191
nuclear@14 192 /* Since this is only a debugging stub, we can cheat a little by using
nuclear@14 193 * fprintf directly rather than going through the trace message code.
nuclear@14 194 * This is helpful because message parm array can't handle longs.
nuclear@14 195 */
nuclear@14 196 fprintf(stderr, "Freeing pool %d, total space = %ld\n",
nuclear@14 197 pool_id, mem->total_space_allocated);
nuclear@14 198
nuclear@14 199 for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
nuclear@14 200 lhdr_ptr = lhdr_ptr->hdr.next) {
nuclear@14 201 fprintf(stderr, " Large chunk used %ld\n",
nuclear@14 202 (long) lhdr_ptr->hdr.bytes_used);
nuclear@14 203 }
nuclear@14 204
nuclear@14 205 for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
nuclear@14 206 shdr_ptr = shdr_ptr->hdr.next) {
nuclear@14 207 fprintf(stderr, " Small chunk used %ld free %ld\n",
nuclear@14 208 (long) shdr_ptr->hdr.bytes_used,
nuclear@14 209 (long) shdr_ptr->hdr.bytes_left);
nuclear@14 210 }
nuclear@14 211 }
nuclear@14 212
nuclear@14 213 #endif /* MEM_STATS */
nuclear@14 214
nuclear@14 215
nuclear@14 216 LOCAL(void)
nuclear@14 217 out_of_memory (j_common_ptr cinfo, int which)
nuclear@14 218 /* Report an out-of-memory error and stop execution */
nuclear@14 219 /* If we compiled MEM_STATS support, report alloc requests before dying */
nuclear@14 220 {
nuclear@14 221 #ifdef MEM_STATS
nuclear@14 222 cinfo->err->trace_level = 2; /* force self_destruct to report stats */
nuclear@14 223 #endif
nuclear@14 224 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
nuclear@14 225 }
nuclear@14 226
nuclear@14 227
nuclear@14 228 /*
nuclear@14 229 * Allocation of "small" objects.
nuclear@14 230 *
nuclear@14 231 * For these, we use pooled storage. When a new pool must be created,
nuclear@14 232 * we try to get enough space for the current request plus a "slop" factor,
nuclear@14 233 * where the slop will be the amount of leftover space in the new pool.
nuclear@14 234 * The speed vs. space tradeoff is largely determined by the slop values.
nuclear@14 235 * A different slop value is provided for each pool class (lifetime),
nuclear@14 236 * and we also distinguish the first pool of a class from later ones.
nuclear@14 237 * NOTE: the values given work fairly well on both 16- and 32-bit-int
nuclear@14 238 * machines, but may be too small if longs are 64 bits or more.
nuclear@14 239 */
nuclear@14 240
nuclear@14 241 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
nuclear@14 242 {
nuclear@14 243 1600, /* first PERMANENT pool */
nuclear@14 244 16000 /* first IMAGE pool */
nuclear@14 245 };
nuclear@14 246
nuclear@14 247 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
nuclear@14 248 {
nuclear@14 249 0, /* additional PERMANENT pools */
nuclear@14 250 5000 /* additional IMAGE pools */
nuclear@14 251 };
nuclear@14 252
nuclear@14 253 #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
nuclear@14 254
nuclear@14 255
nuclear@14 256 METHODDEF(void *)
nuclear@14 257 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
nuclear@14 258 /* Allocate a "small" object */
nuclear@14 259 {
nuclear@14 260 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
nuclear@14 261 small_pool_ptr hdr_ptr, prev_hdr_ptr;
nuclear@14 262 char * data_ptr;
nuclear@14 263 size_t odd_bytes, min_request, slop;
nuclear@14 264
nuclear@14 265 /* Check for unsatisfiable request (do now to ensure no overflow below) */
nuclear@14 266 if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
nuclear@14 267 out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
nuclear@14 268
nuclear@14 269 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
nuclear@14 270 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
nuclear@14 271 if (odd_bytes > 0)
nuclear@14 272 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
nuclear@14 273
nuclear@14 274 /* See if space is available in any existing pool */
nuclear@14 275 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
nuclear@14 276 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
nuclear@14 277 prev_hdr_ptr = NULL;
nuclear@14 278 hdr_ptr = mem->small_list[pool_id];
nuclear@14 279 while (hdr_ptr != NULL) {
nuclear@14 280 if (hdr_ptr->hdr.bytes_left >= sizeofobject)
nuclear@14 281 break; /* found pool with enough space */
nuclear@14 282 prev_hdr_ptr = hdr_ptr;
nuclear@14 283 hdr_ptr = hdr_ptr->hdr.next;
nuclear@14 284 }
nuclear@14 285
nuclear@14 286 /* Time to make a new pool? */
nuclear@14 287 if (hdr_ptr == NULL) {
nuclear@14 288 /* min_request is what we need now, slop is what will be leftover */
nuclear@14 289 min_request = sizeofobject + SIZEOF(small_pool_hdr);
nuclear@14 290 if (prev_hdr_ptr == NULL) /* first pool in class? */
nuclear@14 291 slop = first_pool_slop[pool_id];
nuclear@14 292 else
nuclear@14 293 slop = extra_pool_slop[pool_id];
nuclear@14 294 /* Don't ask for more than MAX_ALLOC_CHUNK */
nuclear@14 295 if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
nuclear@14 296 slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
nuclear@14 297 /* Try to get space, if fail reduce slop and try again */
nuclear@14 298 for (;;) {
nuclear@14 299 hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
nuclear@14 300 if (hdr_ptr != NULL)
nuclear@14 301 break;
nuclear@14 302 slop /= 2;
nuclear@14 303 if (slop < MIN_SLOP) /* give up when it gets real small */
nuclear@14 304 out_of_memory(cinfo, 2); /* jpeg_get_small failed */
nuclear@14 305 }
nuclear@14 306 mem->total_space_allocated += min_request + slop;
nuclear@14 307 /* Success, initialize the new pool header and add to end of list */
nuclear@14 308 hdr_ptr->hdr.next = NULL;
nuclear@14 309 hdr_ptr->hdr.bytes_used = 0;
nuclear@14 310 hdr_ptr->hdr.bytes_left = sizeofobject + slop;
nuclear@14 311 if (prev_hdr_ptr == NULL) /* first pool in class? */
nuclear@14 312 mem->small_list[pool_id] = hdr_ptr;
nuclear@14 313 else
nuclear@14 314 prev_hdr_ptr->hdr.next = hdr_ptr;
nuclear@14 315 }
nuclear@14 316
nuclear@14 317 /* OK, allocate the object from the current pool */
nuclear@14 318 data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
nuclear@14 319 data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
nuclear@14 320 hdr_ptr->hdr.bytes_used += sizeofobject;
nuclear@14 321 hdr_ptr->hdr.bytes_left -= sizeofobject;
nuclear@14 322
nuclear@14 323 return (void *) data_ptr;
nuclear@14 324 }
nuclear@14 325
nuclear@14 326
nuclear@14 327 /*
nuclear@14 328 * Allocation of "large" objects.
nuclear@14 329 *
nuclear@14 330 * The external semantics of these are the same as "small" objects,
nuclear@14 331 * except that FAR pointers are used on 80x86. However the pool
nuclear@14 332 * management heuristics are quite different. We assume that each
nuclear@14 333 * request is large enough that it may as well be passed directly to
nuclear@14 334 * jpeg_get_large; the pool management just links everything together
nuclear@14 335 * so that we can free it all on demand.
nuclear@14 336 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
nuclear@14 337 * structures. The routines that create these structures (see below)
nuclear@14 338 * deliberately bunch rows together to ensure a large request size.
nuclear@14 339 */
nuclear@14 340
nuclear@14 341 METHODDEF(void FAR *)
nuclear@14 342 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
nuclear@14 343 /* Allocate a "large" object */
nuclear@14 344 {
nuclear@14 345 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
nuclear@14 346 large_pool_ptr hdr_ptr;
nuclear@14 347 size_t odd_bytes;
nuclear@14 348
nuclear@14 349 /* Check for unsatisfiable request (do now to ensure no overflow below) */
nuclear@14 350 if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
nuclear@14 351 out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
nuclear@14 352
nuclear@14 353 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
nuclear@14 354 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
nuclear@14 355 if (odd_bytes > 0)
nuclear@14 356 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
nuclear@14 357
nuclear@14 358 /* Always make a new pool */
nuclear@14 359 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
nuclear@14 360 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
nuclear@14 361
nuclear@14 362 hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
nuclear@14 363 SIZEOF(large_pool_hdr));
nuclear@14 364 if (hdr_ptr == NULL)
nuclear@14 365 out_of_memory(cinfo, 4); /* jpeg_get_large failed */
nuclear@14 366 mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
nuclear@14 367
nuclear@14 368 /* Success, initialize the new pool header and add to list */
nuclear@14 369 hdr_ptr->hdr.next = mem->large_list[pool_id];
nuclear@14 370 /* We maintain space counts in each pool header for statistical purposes,
nuclear@14 371 * even though they are not needed for allocation.
nuclear@14 372 */
nuclear@14 373 hdr_ptr->hdr.bytes_used = sizeofobject;
nuclear@14 374 hdr_ptr->hdr.bytes_left = 0;
nuclear@14 375 mem->large_list[pool_id] = hdr_ptr;
nuclear@14 376
nuclear@14 377 return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
nuclear@14 378 }
nuclear@14 379
nuclear@14 380
nuclear@14 381 /*
nuclear@14 382 * Creation of 2-D sample arrays.
nuclear@14 383 * The pointers are in near heap, the samples themselves in FAR heap.
nuclear@14 384 *
nuclear@14 385 * To minimize allocation overhead and to allow I/O of large contiguous
nuclear@14 386 * blocks, we allocate the sample rows in groups of as many rows as possible
nuclear@14 387 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
nuclear@14 388 * NB: the virtual array control routines, later in this file, know about
nuclear@14 389 * this chunking of rows. The rowsperchunk value is left in the mem manager
nuclear@14 390 * object so that it can be saved away if this sarray is the workspace for
nuclear@14 391 * a virtual array.
nuclear@14 392 */
nuclear@14 393
nuclear@14 394 METHODDEF(JSAMPARRAY)
nuclear@14 395 alloc_sarray (j_common_ptr cinfo, int pool_id,
nuclear@14 396 JDIMENSION samplesperrow, JDIMENSION numrows)
nuclear@14 397 /* Allocate a 2-D sample array */
nuclear@14 398 {
nuclear@14 399 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
nuclear@14 400 JSAMPARRAY result;
nuclear@14 401 JSAMPROW workspace;
nuclear@14 402 JDIMENSION rowsperchunk, currow, i;
nuclear@14 403 long ltemp;
nuclear@14 404
nuclear@14 405 /* Calculate max # of rows allowed in one allocation chunk */
nuclear@14 406 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
nuclear@14 407 ((long) samplesperrow * SIZEOF(JSAMPLE));
nuclear@14 408 if (ltemp <= 0)
nuclear@14 409 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
nuclear@14 410 if (ltemp < (long) numrows)
nuclear@14 411 rowsperchunk = (JDIMENSION) ltemp;
nuclear@14 412 else
nuclear@14 413 rowsperchunk = numrows;
nuclear@14 414 mem->last_rowsperchunk = rowsperchunk;
nuclear@14 415
nuclear@14 416 /* Get space for row pointers (small object) */
nuclear@14 417 result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
nuclear@14 418 (size_t) (numrows * SIZEOF(JSAMPROW)));
nuclear@14 419
nuclear@14 420 /* Get the rows themselves (large objects) */
nuclear@14 421 currow = 0;
nuclear@14 422 while (currow < numrows) {
nuclear@14 423 rowsperchunk = MIN(rowsperchunk, numrows - currow);
nuclear@14 424 workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
nuclear@14 425 (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
nuclear@14 426 * SIZEOF(JSAMPLE)));
nuclear@14 427 for (i = rowsperchunk; i > 0; i--) {
nuclear@14 428 result[currow++] = workspace;
nuclear@14 429 workspace += samplesperrow;
nuclear@14 430 }
nuclear@14 431 }
nuclear@14 432
nuclear@14 433 return result;
nuclear@14 434 }
nuclear@14 435
nuclear@14 436
nuclear@14 437 /*
nuclear@14 438 * Creation of 2-D coefficient-block arrays.
nuclear@14 439 * This is essentially the same as the code for sample arrays, above.
nuclear@14 440 */
nuclear@14 441
nuclear@14 442 METHODDEF(JBLOCKARRAY)
nuclear@14 443 alloc_barray (j_common_ptr cinfo, int pool_id,
nuclear@14 444 JDIMENSION blocksperrow, JDIMENSION numrows)
nuclear@14 445 /* Allocate a 2-D coefficient-block array */
nuclear@14 446 {
nuclear@14 447 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
nuclear@14 448 JBLOCKARRAY result;
nuclear@14 449 JBLOCKROW workspace;
nuclear@14 450 JDIMENSION rowsperchunk, currow, i;
nuclear@14 451 long ltemp;
nuclear@14 452
nuclear@14 453 /* Calculate max # of rows allowed in one allocation chunk */
nuclear@14 454 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
nuclear@14 455 ((long) blocksperrow * SIZEOF(JBLOCK));
nuclear@14 456 if (ltemp <= 0)
nuclear@14 457 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
nuclear@14 458 if (ltemp < (long) numrows)
nuclear@14 459 rowsperchunk = (JDIMENSION) ltemp;
nuclear@14 460 else
nuclear@14 461 rowsperchunk = numrows;
nuclear@14 462 mem->last_rowsperchunk = rowsperchunk;
nuclear@14 463
nuclear@14 464 /* Get space for row pointers (small object) */
nuclear@14 465 result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
nuclear@14 466 (size_t) (numrows * SIZEOF(JBLOCKROW)));
nuclear@14 467
nuclear@14 468 /* Get the rows themselves (large objects) */
nuclear@14 469 currow = 0;
nuclear@14 470 while (currow < numrows) {
nuclear@14 471 rowsperchunk = MIN(rowsperchunk, numrows - currow);
nuclear@14 472 workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
nuclear@14 473 (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
nuclear@14 474 * SIZEOF(JBLOCK)));
nuclear@14 475 for (i = rowsperchunk; i > 0; i--) {
nuclear@14 476 result[currow++] = workspace;
nuclear@14 477 workspace += blocksperrow;
nuclear@14 478 }
nuclear@14 479 }
nuclear@14 480
nuclear@14 481 return result;
nuclear@14 482 }
nuclear@14 483
nuclear@14 484
nuclear@14 485 /*
nuclear@14 486 * About virtual array management:
nuclear@14 487 *
nuclear@14 488 * The above "normal" array routines are only used to allocate strip buffers
nuclear@14 489 * (as wide as the image, but just a few rows high). Full-image-sized buffers
nuclear@14 490 * are handled as "virtual" arrays. The array is still accessed a strip at a
nuclear@14 491 * time, but the memory manager must save the whole array for repeated
nuclear@14 492 * accesses. The intended implementation is that there is a strip buffer in
nuclear@14 493 * memory (as high as is possible given the desired memory limit), plus a
nuclear@14 494 * backing file that holds the rest of the array.
nuclear@14 495 *
nuclear@14 496 * The request_virt_array routines are told the total size of the image and
nuclear@14 497 * the maximum number of rows that will be accessed at once. The in-memory
nuclear@14 498 * buffer must be at least as large as the maxaccess value.
nuclear@14 499 *
nuclear@14 500 * The request routines create control blocks but not the in-memory buffers.
nuclear@14 501 * That is postponed until realize_virt_arrays is called. At that time the
nuclear@14 502 * total amount of space needed is known (approximately, anyway), so free
nuclear@14 503 * memory can be divided up fairly.
nuclear@14 504 *
nuclear@14 505 * The access_virt_array routines are responsible for making a specific strip
nuclear@14 506 * area accessible (after reading or writing the backing file, if necessary).
nuclear@14 507 * Note that the access routines are told whether the caller intends to modify
nuclear@14 508 * the accessed strip; during a read-only pass this saves having to rewrite
nuclear@14 509 * data to disk. The access routines are also responsible for pre-zeroing
nuclear@14 510 * any newly accessed rows, if pre-zeroing was requested.
nuclear@14 511 *
nuclear@14 512 * In current usage, the access requests are usually for nonoverlapping
nuclear@14 513 * strips; that is, successive access start_row numbers differ by exactly
nuclear@14 514 * num_rows = maxaccess. This means we can get good performance with simple
nuclear@14 515 * buffer dump/reload logic, by making the in-memory buffer be a multiple
nuclear@14 516 * of the access height; then there will never be accesses across bufferload
nuclear@14 517 * boundaries. The code will still work with overlapping access requests,
nuclear@14 518 * but it doesn't handle bufferload overlaps very efficiently.
nuclear@14 519 */
nuclear@14 520
nuclear@14 521
nuclear@14 522 METHODDEF(jvirt_sarray_ptr)
nuclear@14 523 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
nuclear@14 524 JDIMENSION samplesperrow, JDIMENSION numrows,
nuclear@14 525 JDIMENSION maxaccess)
nuclear@14 526 /* Request a virtual 2-D sample array */
nuclear@14 527 {
nuclear@14 528 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
nuclear@14 529 jvirt_sarray_ptr result;
nuclear@14 530
nuclear@14 531 /* Only IMAGE-lifetime virtual arrays are currently supported */
nuclear@14 532 if (pool_id != JPOOL_IMAGE)
nuclear@14 533 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
nuclear@14 534
nuclear@14 535 /* get control block */
nuclear@14 536 result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
nuclear@14 537 SIZEOF(struct jvirt_sarray_control));
nuclear@14 538
nuclear@14 539 result->mem_buffer = NULL; /* marks array not yet realized */
nuclear@14 540 result->rows_in_array = numrows;
nuclear@14 541 result->samplesperrow = samplesperrow;
nuclear@14 542 result->maxaccess = maxaccess;
nuclear@14 543 result->pre_zero = pre_zero;
nuclear@14 544 result->b_s_open = FALSE; /* no associated backing-store object */
nuclear@14 545 result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
nuclear@14 546 mem->virt_sarray_list = result;
nuclear@14 547
nuclear@14 548 return result;
nuclear@14 549 }
nuclear@14 550
nuclear@14 551
nuclear@14 552 METHODDEF(jvirt_barray_ptr)
nuclear@14 553 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
nuclear@14 554 JDIMENSION blocksperrow, JDIMENSION numrows,
nuclear@14 555 JDIMENSION maxaccess)
nuclear@14 556 /* Request a virtual 2-D coefficient-block array */
nuclear@14 557 {
nuclear@14 558 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
nuclear@14 559 jvirt_barray_ptr result;
nuclear@14 560
nuclear@14 561 /* Only IMAGE-lifetime virtual arrays are currently supported */
nuclear@14 562 if (pool_id != JPOOL_IMAGE)
nuclear@14 563 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
nuclear@14 564
nuclear@14 565 /* get control block */
nuclear@14 566 result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
nuclear@14 567 SIZEOF(struct jvirt_barray_control));
nuclear@14 568
nuclear@14 569 result->mem_buffer = NULL; /* marks array not yet realized */
nuclear@14 570 result->rows_in_array = numrows;
nuclear@14 571 result->blocksperrow = blocksperrow;
nuclear@14 572 result->maxaccess = maxaccess;
nuclear@14 573 result->pre_zero = pre_zero;
nuclear@14 574 result->b_s_open = FALSE; /* no associated backing-store object */
nuclear@14 575 result->next = mem->virt_barray_list; /* add to list of virtual arrays */
nuclear@14 576 mem->virt_barray_list = result;
nuclear@14 577
nuclear@14 578 return result;
nuclear@14 579 }
nuclear@14 580
nuclear@14 581
nuclear@14 582 METHODDEF(void)
nuclear@14 583 realize_virt_arrays (j_common_ptr cinfo)
nuclear@14 584 /* Allocate the in-memory buffers for any unrealized virtual arrays */
nuclear@14 585 {
nuclear@14 586 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
nuclear@14 587 long space_per_minheight, maximum_space, avail_mem;
nuclear@14 588 long minheights, max_minheights;
nuclear@14 589 jvirt_sarray_ptr sptr;
nuclear@14 590 jvirt_barray_ptr bptr;
nuclear@14 591
nuclear@14 592 /* Compute the minimum space needed (maxaccess rows in each buffer)
nuclear@14 593 * and the maximum space needed (full image height in each buffer).
nuclear@14 594 * These may be of use to the system-dependent jpeg_mem_available routine.
nuclear@14 595 */
nuclear@14 596 space_per_minheight = 0;
nuclear@14 597 maximum_space = 0;
nuclear@14 598 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
nuclear@14 599 if (sptr->mem_buffer == NULL) { /* if not realized yet */
nuclear@14 600 space_per_minheight += (long) sptr->maxaccess *
nuclear@14 601 (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
nuclear@14 602 maximum_space += (long) sptr->rows_in_array *
nuclear@14 603 (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
nuclear@14 604 }
nuclear@14 605 }
nuclear@14 606 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
nuclear@14 607 if (bptr->mem_buffer == NULL) { /* if not realized yet */
nuclear@14 608 space_per_minheight += (long) bptr->maxaccess *
nuclear@14 609 (long) bptr->blocksperrow * SIZEOF(JBLOCK);
nuclear@14 610 maximum_space += (long) bptr->rows_in_array *
nuclear@14 611 (long) bptr->blocksperrow * SIZEOF(JBLOCK);
nuclear@14 612 }
nuclear@14 613 }
nuclear@14 614
nuclear@14 615 if (space_per_minheight <= 0)
nuclear@14 616 return; /* no unrealized arrays, no work */
nuclear@14 617
nuclear@14 618 /* Determine amount of memory to actually use; this is system-dependent. */
nuclear@14 619 avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
nuclear@14 620 mem->total_space_allocated);
nuclear@14 621
nuclear@14 622 /* If the maximum space needed is available, make all the buffers full
nuclear@14 623 * height; otherwise parcel it out with the same number of minheights
nuclear@14 624 * in each buffer.
nuclear@14 625 */
nuclear@14 626 if (avail_mem >= maximum_space)
nuclear@14 627 max_minheights = 1000000000L;
nuclear@14 628 else {
nuclear@14 629 max_minheights = avail_mem / space_per_minheight;
nuclear@14 630 /* If there doesn't seem to be enough space, try to get the minimum
nuclear@14 631 * anyway. This allows a "stub" implementation of jpeg_mem_available().
nuclear@14 632 */
nuclear@14 633 if (max_minheights <= 0)
nuclear@14 634 max_minheights = 1;
nuclear@14 635 }
nuclear@14 636
nuclear@14 637 /* Allocate the in-memory buffers and initialize backing store as needed. */
nuclear@14 638
nuclear@14 639 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
nuclear@14 640 if (sptr->mem_buffer == NULL) { /* if not realized yet */
nuclear@14 641 minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
nuclear@14 642 if (minheights <= max_minheights) {
nuclear@14 643 /* This buffer fits in memory */
nuclear@14 644 sptr->rows_in_mem = sptr->rows_in_array;
nuclear@14 645 } else {
nuclear@14 646 /* It doesn't fit in memory, create backing store. */
nuclear@14 647 sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
nuclear@14 648 jpeg_open_backing_store(cinfo, & sptr->b_s_info,
nuclear@14 649 (long) sptr->rows_in_array *
nuclear@14 650 (long) sptr->samplesperrow *
nuclear@14 651 (long) SIZEOF(JSAMPLE));
nuclear@14 652 sptr->b_s_open = TRUE;
nuclear@14 653 }
nuclear@14 654 sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
nuclear@14 655 sptr->samplesperrow, sptr->rows_in_mem);
nuclear@14 656 sptr->rowsperchunk = mem->last_rowsperchunk;
nuclear@14 657 sptr->cur_start_row = 0;
nuclear@14 658 sptr->first_undef_row = 0;
nuclear@14 659 sptr->dirty = FALSE;
nuclear@14 660 }
nuclear@14 661 }
nuclear@14 662
nuclear@14 663 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
nuclear@14 664 if (bptr->mem_buffer == NULL) { /* if not realized yet */
nuclear@14 665 minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
nuclear@14 666 if (minheights <= max_minheights) {
nuclear@14 667 /* This buffer fits in memory */
nuclear@14 668 bptr->rows_in_mem = bptr->rows_in_array;
nuclear@14 669 } else {
nuclear@14 670 /* It doesn't fit in memory, create backing store. */
nuclear@14 671 bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
nuclear@14 672 jpeg_open_backing_store(cinfo, & bptr->b_s_info,
nuclear@14 673 (long) bptr->rows_in_array *
nuclear@14 674 (long) bptr->blocksperrow *
nuclear@14 675 (long) SIZEOF(JBLOCK));
nuclear@14 676 bptr->b_s_open = TRUE;
nuclear@14 677 }
nuclear@14 678 bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
nuclear@14 679 bptr->blocksperrow, bptr->rows_in_mem);
nuclear@14 680 bptr->rowsperchunk = mem->last_rowsperchunk;
nuclear@14 681 bptr->cur_start_row = 0;
nuclear@14 682 bptr->first_undef_row = 0;
nuclear@14 683 bptr->dirty = FALSE;
nuclear@14 684 }
nuclear@14 685 }
nuclear@14 686 }
nuclear@14 687
nuclear@14 688
nuclear@14 689 LOCAL(void)
nuclear@14 690 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
nuclear@14 691 /* Do backing store read or write of a virtual sample array */
nuclear@14 692 {
nuclear@14 693 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
nuclear@14 694
nuclear@14 695 bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
nuclear@14 696 file_offset = ptr->cur_start_row * bytesperrow;
nuclear@14 697 /* Loop to read or write each allocation chunk in mem_buffer */
nuclear@14 698 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
nuclear@14 699 /* One chunk, but check for short chunk at end of buffer */
nuclear@14 700 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
nuclear@14 701 /* Transfer no more than is currently defined */
nuclear@14 702 thisrow = (long) ptr->cur_start_row + i;
nuclear@14 703 rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
nuclear@14 704 /* Transfer no more than fits in file */
nuclear@14 705 rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
nuclear@14 706 if (rows <= 0) /* this chunk might be past end of file! */
nuclear@14 707 break;
nuclear@14 708 byte_count = rows * bytesperrow;
nuclear@14 709 if (writing)
nuclear@14 710 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
nuclear@14 711 (void FAR *) ptr->mem_buffer[i],
nuclear@14 712 file_offset, byte_count);
nuclear@14 713 else
nuclear@14 714 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
nuclear@14 715 (void FAR *) ptr->mem_buffer[i],
nuclear@14 716 file_offset, byte_count);
nuclear@14 717 file_offset += byte_count;
nuclear@14 718 }
nuclear@14 719 }
nuclear@14 720
nuclear@14 721
nuclear@14 722 LOCAL(void)
nuclear@14 723 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
nuclear@14 724 /* Do backing store read or write of a virtual coefficient-block array */
nuclear@14 725 {
nuclear@14 726 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
nuclear@14 727
nuclear@14 728 bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
nuclear@14 729 file_offset = ptr->cur_start_row * bytesperrow;
nuclear@14 730 /* Loop to read or write each allocation chunk in mem_buffer */
nuclear@14 731 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
nuclear@14 732 /* One chunk, but check for short chunk at end of buffer */
nuclear@14 733 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
nuclear@14 734 /* Transfer no more than is currently defined */
nuclear@14 735 thisrow = (long) ptr->cur_start_row + i;
nuclear@14 736 rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
nuclear@14 737 /* Transfer no more than fits in file */
nuclear@14 738 rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
nuclear@14 739 if (rows <= 0) /* this chunk might be past end of file! */
nuclear@14 740 break;
nuclear@14 741 byte_count = rows * bytesperrow;
nuclear@14 742 if (writing)
nuclear@14 743 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
nuclear@14 744 (void FAR *) ptr->mem_buffer[i],
nuclear@14 745 file_offset, byte_count);
nuclear@14 746 else
nuclear@14 747 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
nuclear@14 748 (void FAR *) ptr->mem_buffer[i],
nuclear@14 749 file_offset, byte_count);
nuclear@14 750 file_offset += byte_count;
nuclear@14 751 }
nuclear@14 752 }
nuclear@14 753
nuclear@14 754
nuclear@14 755 METHODDEF(JSAMPARRAY)
nuclear@14 756 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
nuclear@14 757 JDIMENSION start_row, JDIMENSION num_rows,
nuclear@14 758 boolean writable)
nuclear@14 759 /* Access the part of a virtual sample array starting at start_row */
nuclear@14 760 /* and extending for num_rows rows. writable is true if */
nuclear@14 761 /* caller intends to modify the accessed area. */
nuclear@14 762 {
nuclear@14 763 JDIMENSION end_row = start_row + num_rows;
nuclear@14 764 JDIMENSION undef_row;
nuclear@14 765
nuclear@14 766 /* debugging check */
nuclear@14 767 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
nuclear@14 768 ptr->mem_buffer == NULL)
nuclear@14 769 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
nuclear@14 770
nuclear@14 771 /* Make the desired part of the virtual array accessible */
nuclear@14 772 if (start_row < ptr->cur_start_row ||
nuclear@14 773 end_row > ptr->cur_start_row+ptr->rows_in_mem) {
nuclear@14 774 if (! ptr->b_s_open)
nuclear@14 775 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
nuclear@14 776 /* Flush old buffer contents if necessary */
nuclear@14 777 if (ptr->dirty) {
nuclear@14 778 do_sarray_io(cinfo, ptr, TRUE);
nuclear@14 779 ptr->dirty = FALSE;
nuclear@14 780 }
nuclear@14 781 /* Decide what part of virtual array to access.
nuclear@14 782 * Algorithm: if target address > current window, assume forward scan,
nuclear@14 783 * load starting at target address. If target address < current window,
nuclear@14 784 * assume backward scan, load so that target area is top of window.
nuclear@14 785 * Note that when switching from forward write to forward read, will have
nuclear@14 786 * start_row = 0, so the limiting case applies and we load from 0 anyway.
nuclear@14 787 */
nuclear@14 788 if (start_row > ptr->cur_start_row) {
nuclear@14 789 ptr->cur_start_row = start_row;
nuclear@14 790 } else {
nuclear@14 791 /* use long arithmetic here to avoid overflow & unsigned problems */
nuclear@14 792 long ltemp;
nuclear@14 793
nuclear@14 794 ltemp = (long) end_row - (long) ptr->rows_in_mem;
nuclear@14 795 if (ltemp < 0)
nuclear@14 796 ltemp = 0; /* don't fall off front end of file */
nuclear@14 797 ptr->cur_start_row = (JDIMENSION) ltemp;
nuclear@14 798 }
nuclear@14 799 /* Read in the selected part of the array.
nuclear@14 800 * During the initial write pass, we will do no actual read
nuclear@14 801 * because the selected part is all undefined.
nuclear@14 802 */
nuclear@14 803 do_sarray_io(cinfo, ptr, FALSE);
nuclear@14 804 }
nuclear@14 805 /* Ensure the accessed part of the array is defined; prezero if needed.
nuclear@14 806 * To improve locality of access, we only prezero the part of the array
nuclear@14 807 * that the caller is about to access, not the entire in-memory array.
nuclear@14 808 */
nuclear@14 809 if (ptr->first_undef_row < end_row) {
nuclear@14 810 if (ptr->first_undef_row < start_row) {
nuclear@14 811 if (writable) /* writer skipped over a section of array */
nuclear@14 812 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
nuclear@14 813 undef_row = start_row; /* but reader is allowed to read ahead */
nuclear@14 814 } else {
nuclear@14 815 undef_row = ptr->first_undef_row;
nuclear@14 816 }
nuclear@14 817 if (writable)
nuclear@14 818 ptr->first_undef_row = end_row;
nuclear@14 819 if (ptr->pre_zero) {
nuclear@14 820 size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
nuclear@14 821 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
nuclear@14 822 end_row -= ptr->cur_start_row;
nuclear@14 823 while (undef_row < end_row) {
nuclear@14 824 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
nuclear@14 825 undef_row++;
nuclear@14 826 }
nuclear@14 827 } else {
nuclear@14 828 if (! writable) /* reader looking at undefined data */
nuclear@14 829 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
nuclear@14 830 }
nuclear@14 831 }
nuclear@14 832 /* Flag the buffer dirty if caller will write in it */
nuclear@14 833 if (writable)
nuclear@14 834 ptr->dirty = TRUE;
nuclear@14 835 /* Return address of proper part of the buffer */
nuclear@14 836 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
nuclear@14 837 }
nuclear@14 838
nuclear@14 839
nuclear@14 840 METHODDEF(JBLOCKARRAY)
nuclear@14 841 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
nuclear@14 842 JDIMENSION start_row, JDIMENSION num_rows,
nuclear@14 843 boolean writable)
nuclear@14 844 /* Access the part of a virtual block array starting at start_row */
nuclear@14 845 /* and extending for num_rows rows. writable is true if */
nuclear@14 846 /* caller intends to modify the accessed area. */
nuclear@14 847 {
nuclear@14 848 JDIMENSION end_row = start_row + num_rows;
nuclear@14 849 JDIMENSION undef_row;
nuclear@14 850
nuclear@14 851 /* debugging check */
nuclear@14 852 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
nuclear@14 853 ptr->mem_buffer == NULL)
nuclear@14 854 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
nuclear@14 855
nuclear@14 856 /* Make the desired part of the virtual array accessible */
nuclear@14 857 if (start_row < ptr->cur_start_row ||
nuclear@14 858 end_row > ptr->cur_start_row+ptr->rows_in_mem) {
nuclear@14 859 if (! ptr->b_s_open)
nuclear@14 860 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
nuclear@14 861 /* Flush old buffer contents if necessary */
nuclear@14 862 if (ptr->dirty) {
nuclear@14 863 do_barray_io(cinfo, ptr, TRUE);
nuclear@14 864 ptr->dirty = FALSE;
nuclear@14 865 }
nuclear@14 866 /* Decide what part of virtual array to access.
nuclear@14 867 * Algorithm: if target address > current window, assume forward scan,
nuclear@14 868 * load starting at target address. If target address < current window,
nuclear@14 869 * assume backward scan, load so that target area is top of window.
nuclear@14 870 * Note that when switching from forward write to forward read, will have
nuclear@14 871 * start_row = 0, so the limiting case applies and we load from 0 anyway.
nuclear@14 872 */
nuclear@14 873 if (start_row > ptr->cur_start_row) {
nuclear@14 874 ptr->cur_start_row = start_row;
nuclear@14 875 } else {
nuclear@14 876 /* use long arithmetic here to avoid overflow & unsigned problems */
nuclear@14 877 long ltemp;
nuclear@14 878
nuclear@14 879 ltemp = (long) end_row - (long) ptr->rows_in_mem;
nuclear@14 880 if (ltemp < 0)
nuclear@14 881 ltemp = 0; /* don't fall off front end of file */
nuclear@14 882 ptr->cur_start_row = (JDIMENSION) ltemp;
nuclear@14 883 }
nuclear@14 884 /* Read in the selected part of the array.
nuclear@14 885 * During the initial write pass, we will do no actual read
nuclear@14 886 * because the selected part is all undefined.
nuclear@14 887 */
nuclear@14 888 do_barray_io(cinfo, ptr, FALSE);
nuclear@14 889 }
nuclear@14 890 /* Ensure the accessed part of the array is defined; prezero if needed.
nuclear@14 891 * To improve locality of access, we only prezero the part of the array
nuclear@14 892 * that the caller is about to access, not the entire in-memory array.
nuclear@14 893 */
nuclear@14 894 if (ptr->first_undef_row < end_row) {
nuclear@14 895 if (ptr->first_undef_row < start_row) {
nuclear@14 896 if (writable) /* writer skipped over a section of array */
nuclear@14 897 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
nuclear@14 898 undef_row = start_row; /* but reader is allowed to read ahead */
nuclear@14 899 } else {
nuclear@14 900 undef_row = ptr->first_undef_row;
nuclear@14 901 }
nuclear@14 902 if (writable)
nuclear@14 903 ptr->first_undef_row = end_row;
nuclear@14 904 if (ptr->pre_zero) {
nuclear@14 905 size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
nuclear@14 906 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
nuclear@14 907 end_row -= ptr->cur_start_row;
nuclear@14 908 while (undef_row < end_row) {
nuclear@14 909 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
nuclear@14 910 undef_row++;
nuclear@14 911 }
nuclear@14 912 } else {
nuclear@14 913 if (! writable) /* reader looking at undefined data */
nuclear@14 914 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
nuclear@14 915 }
nuclear@14 916 }
nuclear@14 917 /* Flag the buffer dirty if caller will write in it */
nuclear@14 918 if (writable)
nuclear@14 919 ptr->dirty = TRUE;
nuclear@14 920 /* Return address of proper part of the buffer */
nuclear@14 921 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
nuclear@14 922 }
nuclear@14 923
nuclear@14 924
nuclear@14 925 /*
nuclear@14 926 * Release all objects belonging to a specified pool.
nuclear@14 927 */
nuclear@14 928
nuclear@14 929 METHODDEF(void)
nuclear@14 930 free_pool (j_common_ptr cinfo, int pool_id)
nuclear@14 931 {
nuclear@14 932 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
nuclear@14 933 small_pool_ptr shdr_ptr;
nuclear@14 934 large_pool_ptr lhdr_ptr;
nuclear@14 935 size_t space_freed;
nuclear@14 936
nuclear@14 937 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
nuclear@14 938 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
nuclear@14 939
nuclear@14 940 #ifdef MEM_STATS
nuclear@14 941 if (cinfo->err->trace_level > 1)
nuclear@14 942 print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
nuclear@14 943 #endif
nuclear@14 944
nuclear@14 945 /* If freeing IMAGE pool, close any virtual arrays first */
nuclear@14 946 if (pool_id == JPOOL_IMAGE) {
nuclear@14 947 jvirt_sarray_ptr sptr;
nuclear@14 948 jvirt_barray_ptr bptr;
nuclear@14 949
nuclear@14 950 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
nuclear@14 951 if (sptr->b_s_open) { /* there may be no backing store */
nuclear@14 952 sptr->b_s_open = FALSE; /* prevent recursive close if error */
nuclear@14 953 (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
nuclear@14 954 }
nuclear@14 955 }
nuclear@14 956 mem->virt_sarray_list = NULL;
nuclear@14 957 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
nuclear@14 958 if (bptr->b_s_open) { /* there may be no backing store */
nuclear@14 959 bptr->b_s_open = FALSE; /* prevent recursive close if error */
nuclear@14 960 (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
nuclear@14 961 }
nuclear@14 962 }
nuclear@14 963 mem->virt_barray_list = NULL;
nuclear@14 964 }
nuclear@14 965
nuclear@14 966 /* Release large objects */
nuclear@14 967 lhdr_ptr = mem->large_list[pool_id];
nuclear@14 968 mem->large_list[pool_id] = NULL;
nuclear@14 969
nuclear@14 970 while (lhdr_ptr != NULL) {
nuclear@14 971 large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
nuclear@14 972 space_freed = lhdr_ptr->hdr.bytes_used +
nuclear@14 973 lhdr_ptr->hdr.bytes_left +
nuclear@14 974 SIZEOF(large_pool_hdr);
nuclear@14 975 jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
nuclear@14 976 mem->total_space_allocated -= space_freed;
nuclear@14 977 lhdr_ptr = next_lhdr_ptr;
nuclear@14 978 }
nuclear@14 979
nuclear@14 980 /* Release small objects */
nuclear@14 981 shdr_ptr = mem->small_list[pool_id];
nuclear@14 982 mem->small_list[pool_id] = NULL;
nuclear@14 983
nuclear@14 984 while (shdr_ptr != NULL) {
nuclear@14 985 small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
nuclear@14 986 space_freed = shdr_ptr->hdr.bytes_used +
nuclear@14 987 shdr_ptr->hdr.bytes_left +
nuclear@14 988 SIZEOF(small_pool_hdr);
nuclear@14 989 jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
nuclear@14 990 mem->total_space_allocated -= space_freed;
nuclear@14 991 shdr_ptr = next_shdr_ptr;
nuclear@14 992 }
nuclear@14 993 }
nuclear@14 994
nuclear@14 995
nuclear@14 996 /*
nuclear@14 997 * Close up shop entirely.
nuclear@14 998 * Note that this cannot be called unless cinfo->mem is non-NULL.
nuclear@14 999 */
nuclear@14 1000
nuclear@14 1001 METHODDEF(void)
nuclear@14 1002 self_destruct (j_common_ptr cinfo)
nuclear@14 1003 {
nuclear@14 1004 int pool;
nuclear@14 1005
nuclear@14 1006 /* Close all backing store, release all memory.
nuclear@14 1007 * Releasing pools in reverse order might help avoid fragmentation
nuclear@14 1008 * with some (brain-damaged) malloc libraries.
nuclear@14 1009 */
nuclear@14 1010 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
nuclear@14 1011 free_pool(cinfo, pool);
nuclear@14 1012 }
nuclear@14 1013
nuclear@14 1014 /* Release the memory manager control block too. */
nuclear@14 1015 jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
nuclear@14 1016 cinfo->mem = NULL; /* ensures I will be called only once */
nuclear@14 1017
nuclear@14 1018 jpeg_mem_term(cinfo); /* system-dependent cleanup */
nuclear@14 1019 }
nuclear@14 1020
nuclear@14 1021
nuclear@14 1022 /*
nuclear@14 1023 * Memory manager initialization.
nuclear@14 1024 * When this is called, only the error manager pointer is valid in cinfo!
nuclear@14 1025 */
nuclear@14 1026
nuclear@14 1027 GLOBAL(void)
nuclear@14 1028 jinit_memory_mgr (j_common_ptr cinfo)
nuclear@14 1029 {
nuclear@14 1030 my_mem_ptr mem;
nuclear@14 1031 long max_to_use;
nuclear@14 1032 int pool;
nuclear@14 1033 size_t test_mac;
nuclear@14 1034
nuclear@14 1035 cinfo->mem = NULL; /* for safety if init fails */
nuclear@14 1036
nuclear@14 1037 /* Check for configuration errors.
nuclear@14 1038 * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
nuclear@14 1039 * doesn't reflect any real hardware alignment requirement.
nuclear@14 1040 * The test is a little tricky: for X>0, X and X-1 have no one-bits
nuclear@14 1041 * in common if and only if X is a power of 2, ie has only one one-bit.
nuclear@14 1042 * Some compilers may give an "unreachable code" warning here; ignore it.
nuclear@14 1043 */
nuclear@14 1044 if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
nuclear@14 1045 ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
nuclear@14 1046 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
nuclear@14 1047 * a multiple of SIZEOF(ALIGN_TYPE).
nuclear@14 1048 * Again, an "unreachable code" warning may be ignored here.
nuclear@14 1049 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
nuclear@14 1050 */
nuclear@14 1051 test_mac = (size_t) MAX_ALLOC_CHUNK;
nuclear@14 1052 if ((long) test_mac != MAX_ALLOC_CHUNK ||
nuclear@14 1053 (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
nuclear@14 1054 ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
nuclear@14 1055
nuclear@14 1056 max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
nuclear@14 1057
nuclear@14 1058 /* Attempt to allocate memory manager's control block */
nuclear@14 1059 mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
nuclear@14 1060
nuclear@14 1061 if (mem == NULL) {
nuclear@14 1062 jpeg_mem_term(cinfo); /* system-dependent cleanup */
nuclear@14 1063 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
nuclear@14 1064 }
nuclear@14 1065
nuclear@14 1066 /* OK, fill in the method pointers */
nuclear@14 1067 mem->pub.alloc_small = alloc_small;
nuclear@14 1068 mem->pub.alloc_large = alloc_large;
nuclear@14 1069 mem->pub.alloc_sarray = alloc_sarray;
nuclear@14 1070 mem->pub.alloc_barray = alloc_barray;
nuclear@14 1071 mem->pub.request_virt_sarray = request_virt_sarray;
nuclear@14 1072 mem->pub.request_virt_barray = request_virt_barray;
nuclear@14 1073 mem->pub.realize_virt_arrays = realize_virt_arrays;
nuclear@14 1074 mem->pub.access_virt_sarray = access_virt_sarray;
nuclear@14 1075 mem->pub.access_virt_barray = access_virt_barray;
nuclear@14 1076 mem->pub.free_pool = free_pool;
nuclear@14 1077 mem->pub.self_destruct = self_destruct;
nuclear@14 1078
nuclear@14 1079 /* Make MAX_ALLOC_CHUNK accessible to other modules */
nuclear@14 1080 mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
nuclear@14 1081
nuclear@14 1082 /* Initialize working state */
nuclear@14 1083 mem->pub.max_memory_to_use = max_to_use;
nuclear@14 1084
nuclear@14 1085 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
nuclear@14 1086 mem->small_list[pool] = NULL;
nuclear@14 1087 mem->large_list[pool] = NULL;
nuclear@14 1088 }
nuclear@14 1089 mem->virt_sarray_list = NULL;
nuclear@14 1090 mem->virt_barray_list = NULL;
nuclear@14 1091
nuclear@14 1092 mem->total_space_allocated = SIZEOF(my_memory_mgr);
nuclear@14 1093
nuclear@14 1094 /* Declare ourselves open for business */
nuclear@14 1095 cinfo->mem = & mem->pub;
nuclear@14 1096
nuclear@14 1097 /* Check for an environment variable JPEGMEM; if found, override the
nuclear@14 1098 * default max_memory setting from jpeg_mem_init. Note that the
nuclear@14 1099 * surrounding application may again override this value.
nuclear@14 1100 * If your system doesn't support getenv(), define NO_GETENV to disable
nuclear@14 1101 * this feature.
nuclear@14 1102 */
nuclear@14 1103 #ifndef NO_GETENV
nuclear@14 1104 { char * memenv;
nuclear@14 1105
nuclear@14 1106 if ((memenv = getenv("JPEGMEM")) != NULL) {
nuclear@14 1107 char ch = 'x';
nuclear@14 1108
nuclear@14 1109 if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
nuclear@14 1110 if (ch == 'm' || ch == 'M')
nuclear@14 1111 max_to_use *= 1000L;
nuclear@14 1112 mem->pub.max_memory_to_use = max_to_use * 1000L;
nuclear@14 1113 }
nuclear@14 1114 }
nuclear@14 1115 }
nuclear@14 1116 #endif
nuclear@14 1117
nuclear@14 1118 }