rev |
line source |
nuclear@14
|
1 /*
|
nuclear@14
|
2 * jctrans.c
|
nuclear@14
|
3 *
|
nuclear@14
|
4 * Copyright (C) 1995-1998, Thomas G. Lane.
|
nuclear@14
|
5 * This file is part of the Independent JPEG Group's software.
|
nuclear@14
|
6 * For conditions of distribution and use, see the accompanying README file.
|
nuclear@14
|
7 *
|
nuclear@14
|
8 * This file contains library routines for transcoding compression,
|
nuclear@14
|
9 * that is, writing raw DCT coefficient arrays to an output JPEG file.
|
nuclear@14
|
10 * The routines in jcapimin.c will also be needed by a transcoder.
|
nuclear@14
|
11 */
|
nuclear@14
|
12
|
nuclear@14
|
13 #define JPEG_INTERNALS
|
nuclear@14
|
14 #include "jinclude.h"
|
nuclear@14
|
15 #include "jpeglib.h"
|
nuclear@14
|
16
|
nuclear@14
|
17
|
nuclear@14
|
18 /* Forward declarations */
|
nuclear@14
|
19 LOCAL(void) transencode_master_selection
|
nuclear@14
|
20 JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
|
nuclear@14
|
21 LOCAL(void) transencode_coef_controller
|
nuclear@14
|
22 JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
|
nuclear@14
|
23
|
nuclear@14
|
24
|
nuclear@14
|
25 /*
|
nuclear@14
|
26 * Compression initialization for writing raw-coefficient data.
|
nuclear@14
|
27 * Before calling this, all parameters and a data destination must be set up.
|
nuclear@14
|
28 * Call jpeg_finish_compress() to actually write the data.
|
nuclear@14
|
29 *
|
nuclear@14
|
30 * The number of passed virtual arrays must match cinfo->num_components.
|
nuclear@14
|
31 * Note that the virtual arrays need not be filled or even realized at
|
nuclear@14
|
32 * the time write_coefficients is called; indeed, if the virtual arrays
|
nuclear@14
|
33 * were requested from this compression object's memory manager, they
|
nuclear@14
|
34 * typically will be realized during this routine and filled afterwards.
|
nuclear@14
|
35 */
|
nuclear@14
|
36
|
nuclear@14
|
37 GLOBAL(void)
|
nuclear@14
|
38 jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)
|
nuclear@14
|
39 {
|
nuclear@14
|
40 if (cinfo->global_state != CSTATE_START)
|
nuclear@14
|
41 ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
nuclear@14
|
42 /* Mark all tables to be written */
|
nuclear@14
|
43 jpeg_suppress_tables(cinfo, FALSE);
|
nuclear@14
|
44 /* (Re)initialize error mgr and destination modules */
|
nuclear@14
|
45 (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
|
nuclear@14
|
46 (*cinfo->dest->init_destination) (cinfo);
|
nuclear@14
|
47 /* Perform master selection of active modules */
|
nuclear@14
|
48 transencode_master_selection(cinfo, coef_arrays);
|
nuclear@14
|
49 /* Wait for jpeg_finish_compress() call */
|
nuclear@14
|
50 cinfo->next_scanline = 0; /* so jpeg_write_marker works */
|
nuclear@14
|
51 cinfo->global_state = CSTATE_WRCOEFS;
|
nuclear@14
|
52 }
|
nuclear@14
|
53
|
nuclear@14
|
54
|
nuclear@14
|
55 /*
|
nuclear@14
|
56 * Initialize the compression object with default parameters,
|
nuclear@14
|
57 * then copy from the source object all parameters needed for lossless
|
nuclear@14
|
58 * transcoding. Parameters that can be varied without loss (such as
|
nuclear@14
|
59 * scan script and Huffman optimization) are left in their default states.
|
nuclear@14
|
60 */
|
nuclear@14
|
61
|
nuclear@14
|
62 GLOBAL(void)
|
nuclear@14
|
63 jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
|
nuclear@14
|
64 j_compress_ptr dstinfo)
|
nuclear@14
|
65 {
|
nuclear@14
|
66 JQUANT_TBL ** qtblptr;
|
nuclear@14
|
67 jpeg_component_info *incomp, *outcomp;
|
nuclear@14
|
68 JQUANT_TBL *c_quant, *slot_quant;
|
nuclear@14
|
69 int tblno, ci, coefi;
|
nuclear@14
|
70
|
nuclear@14
|
71 /* Safety check to ensure start_compress not called yet. */
|
nuclear@14
|
72 if (dstinfo->global_state != CSTATE_START)
|
nuclear@14
|
73 ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state);
|
nuclear@14
|
74 /* Copy fundamental image dimensions */
|
nuclear@14
|
75 dstinfo->image_width = srcinfo->image_width;
|
nuclear@14
|
76 dstinfo->image_height = srcinfo->image_height;
|
nuclear@14
|
77 dstinfo->input_components = srcinfo->num_components;
|
nuclear@14
|
78 dstinfo->in_color_space = srcinfo->jpeg_color_space;
|
nuclear@14
|
79 /* Initialize all parameters to default values */
|
nuclear@14
|
80 jpeg_set_defaults(dstinfo);
|
nuclear@14
|
81 /* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB.
|
nuclear@14
|
82 * Fix it to get the right header markers for the image colorspace.
|
nuclear@14
|
83 */
|
nuclear@14
|
84 jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space);
|
nuclear@14
|
85 dstinfo->data_precision = srcinfo->data_precision;
|
nuclear@14
|
86 dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling;
|
nuclear@14
|
87 /* Copy the source's quantization tables. */
|
nuclear@14
|
88 for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
|
nuclear@14
|
89 if (srcinfo->quant_tbl_ptrs[tblno] != NULL) {
|
nuclear@14
|
90 qtblptr = & dstinfo->quant_tbl_ptrs[tblno];
|
nuclear@14
|
91 if (*qtblptr == NULL)
|
nuclear@14
|
92 *qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo);
|
nuclear@14
|
93 MEMCOPY((*qtblptr)->quantval,
|
nuclear@14
|
94 srcinfo->quant_tbl_ptrs[tblno]->quantval,
|
nuclear@14
|
95 SIZEOF((*qtblptr)->quantval));
|
nuclear@14
|
96 (*qtblptr)->sent_table = FALSE;
|
nuclear@14
|
97 }
|
nuclear@14
|
98 }
|
nuclear@14
|
99 /* Copy the source's per-component info.
|
nuclear@14
|
100 * Note we assume jpeg_set_defaults has allocated the dest comp_info array.
|
nuclear@14
|
101 */
|
nuclear@14
|
102 dstinfo->num_components = srcinfo->num_components;
|
nuclear@14
|
103 if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS)
|
nuclear@14
|
104 ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components,
|
nuclear@14
|
105 MAX_COMPONENTS);
|
nuclear@14
|
106 for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info;
|
nuclear@14
|
107 ci < dstinfo->num_components; ci++, incomp++, outcomp++) {
|
nuclear@14
|
108 outcomp->component_id = incomp->component_id;
|
nuclear@14
|
109 outcomp->h_samp_factor = incomp->h_samp_factor;
|
nuclear@14
|
110 outcomp->v_samp_factor = incomp->v_samp_factor;
|
nuclear@14
|
111 outcomp->quant_tbl_no = incomp->quant_tbl_no;
|
nuclear@14
|
112 /* Make sure saved quantization table for component matches the qtable
|
nuclear@14
|
113 * slot. If not, the input file re-used this qtable slot.
|
nuclear@14
|
114 * IJG encoder currently cannot duplicate this.
|
nuclear@14
|
115 */
|
nuclear@14
|
116 tblno = outcomp->quant_tbl_no;
|
nuclear@14
|
117 if (tblno < 0 || tblno >= NUM_QUANT_TBLS ||
|
nuclear@14
|
118 srcinfo->quant_tbl_ptrs[tblno] == NULL)
|
nuclear@14
|
119 ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno);
|
nuclear@14
|
120 slot_quant = srcinfo->quant_tbl_ptrs[tblno];
|
nuclear@14
|
121 c_quant = incomp->quant_table;
|
nuclear@14
|
122 if (c_quant != NULL) {
|
nuclear@14
|
123 for (coefi = 0; coefi < DCTSIZE2; coefi++) {
|
nuclear@14
|
124 if (c_quant->quantval[coefi] != slot_quant->quantval[coefi])
|
nuclear@14
|
125 ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno);
|
nuclear@14
|
126 }
|
nuclear@14
|
127 }
|
nuclear@14
|
128 /* Note: we do not copy the source's Huffman table assignments;
|
nuclear@14
|
129 * instead we rely on jpeg_set_colorspace to have made a suitable choice.
|
nuclear@14
|
130 */
|
nuclear@14
|
131 }
|
nuclear@14
|
132 /* Also copy JFIF version and resolution information, if available.
|
nuclear@14
|
133 * Strictly speaking this isn't "critical" info, but it's nearly
|
nuclear@14
|
134 * always appropriate to copy it if available. In particular,
|
nuclear@14
|
135 * if the application chooses to copy JFIF 1.02 extension markers from
|
nuclear@14
|
136 * the source file, we need to copy the version to make sure we don't
|
nuclear@14
|
137 * emit a file that has 1.02 extensions but a claimed version of 1.01.
|
nuclear@14
|
138 * We will *not*, however, copy version info from mislabeled "2.01" files.
|
nuclear@14
|
139 */
|
nuclear@14
|
140 if (srcinfo->saw_JFIF_marker) {
|
nuclear@14
|
141 if (srcinfo->JFIF_major_version == 1) {
|
nuclear@14
|
142 dstinfo->JFIF_major_version = srcinfo->JFIF_major_version;
|
nuclear@14
|
143 dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version;
|
nuclear@14
|
144 }
|
nuclear@14
|
145 dstinfo->density_unit = srcinfo->density_unit;
|
nuclear@14
|
146 dstinfo->X_density = srcinfo->X_density;
|
nuclear@14
|
147 dstinfo->Y_density = srcinfo->Y_density;
|
nuclear@14
|
148 }
|
nuclear@14
|
149 }
|
nuclear@14
|
150
|
nuclear@14
|
151
|
nuclear@14
|
152 /*
|
nuclear@14
|
153 * Master selection of compression modules for transcoding.
|
nuclear@14
|
154 * This substitutes for jcinit.c's initialization of the full compressor.
|
nuclear@14
|
155 */
|
nuclear@14
|
156
|
nuclear@14
|
157 LOCAL(void)
|
nuclear@14
|
158 transencode_master_selection (j_compress_ptr cinfo,
|
nuclear@14
|
159 jvirt_barray_ptr * coef_arrays)
|
nuclear@14
|
160 {
|
nuclear@14
|
161 /* Although we don't actually use input_components for transcoding,
|
nuclear@14
|
162 * jcmaster.c's initial_setup will complain if input_components is 0.
|
nuclear@14
|
163 */
|
nuclear@14
|
164 cinfo->input_components = 1;
|
nuclear@14
|
165 /* Initialize master control (includes parameter checking/processing) */
|
nuclear@14
|
166 jinit_c_master_control(cinfo, TRUE /* transcode only */);
|
nuclear@14
|
167
|
nuclear@14
|
168 /* Entropy encoding: either Huffman or arithmetic coding. */
|
nuclear@14
|
169 if (cinfo->arith_code) {
|
nuclear@14
|
170 ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
|
nuclear@14
|
171 } else {
|
nuclear@14
|
172 if (cinfo->progressive_mode) {
|
nuclear@14
|
173 #ifdef C_PROGRESSIVE_SUPPORTED
|
nuclear@14
|
174 jinit_phuff_encoder(cinfo);
|
nuclear@14
|
175 #else
|
nuclear@14
|
176 ERREXIT(cinfo, JERR_NOT_COMPILED);
|
nuclear@14
|
177 #endif
|
nuclear@14
|
178 } else
|
nuclear@14
|
179 jinit_huff_encoder(cinfo);
|
nuclear@14
|
180 }
|
nuclear@14
|
181
|
nuclear@14
|
182 /* We need a special coefficient buffer controller. */
|
nuclear@14
|
183 transencode_coef_controller(cinfo, coef_arrays);
|
nuclear@14
|
184
|
nuclear@14
|
185 jinit_marker_writer(cinfo);
|
nuclear@14
|
186
|
nuclear@14
|
187 /* We can now tell the memory manager to allocate virtual arrays. */
|
nuclear@14
|
188 (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
nuclear@14
|
189
|
nuclear@14
|
190 /* Write the datastream header (SOI, JFIF) immediately.
|
nuclear@14
|
191 * Frame and scan headers are postponed till later.
|
nuclear@14
|
192 * This lets application insert special markers after the SOI.
|
nuclear@14
|
193 */
|
nuclear@14
|
194 (*cinfo->marker->write_file_header) (cinfo);
|
nuclear@14
|
195 }
|
nuclear@14
|
196
|
nuclear@14
|
197
|
nuclear@14
|
198 /*
|
nuclear@14
|
199 * The rest of this file is a special implementation of the coefficient
|
nuclear@14
|
200 * buffer controller. This is similar to jccoefct.c, but it handles only
|
nuclear@14
|
201 * output from presupplied virtual arrays. Furthermore, we generate any
|
nuclear@14
|
202 * dummy padding blocks on-the-fly rather than expecting them to be present
|
nuclear@14
|
203 * in the arrays.
|
nuclear@14
|
204 */
|
nuclear@14
|
205
|
nuclear@14
|
206 /* Private buffer controller object */
|
nuclear@14
|
207
|
nuclear@14
|
208 typedef struct {
|
nuclear@14
|
209 struct jpeg_c_coef_controller pub; /* public fields */
|
nuclear@14
|
210
|
nuclear@14
|
211 JDIMENSION iMCU_row_num; /* iMCU row # within image */
|
nuclear@14
|
212 JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
|
nuclear@14
|
213 int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
nuclear@14
|
214 int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
nuclear@14
|
215
|
nuclear@14
|
216 /* Virtual block array for each component. */
|
nuclear@14
|
217 jvirt_barray_ptr * whole_image;
|
nuclear@14
|
218
|
nuclear@14
|
219 /* Workspace for constructing dummy blocks at right/bottom edges. */
|
nuclear@14
|
220 JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU];
|
nuclear@14
|
221 } my_coef_controller;
|
nuclear@14
|
222
|
nuclear@14
|
223 typedef my_coef_controller * my_coef_ptr;
|
nuclear@14
|
224
|
nuclear@14
|
225
|
nuclear@14
|
226 LOCAL(void)
|
nuclear@14
|
227 start_iMCU_row (j_compress_ptr cinfo)
|
nuclear@14
|
228 /* Reset within-iMCU-row counters for a new row */
|
nuclear@14
|
229 {
|
nuclear@14
|
230 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
nuclear@14
|
231
|
nuclear@14
|
232 /* In an interleaved scan, an MCU row is the same as an iMCU row.
|
nuclear@14
|
233 * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
nuclear@14
|
234 * But at the bottom of the image, process only what's left.
|
nuclear@14
|
235 */
|
nuclear@14
|
236 if (cinfo->comps_in_scan > 1) {
|
nuclear@14
|
237 coef->MCU_rows_per_iMCU_row = 1;
|
nuclear@14
|
238 } else {
|
nuclear@14
|
239 if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
|
nuclear@14
|
240 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
nuclear@14
|
241 else
|
nuclear@14
|
242 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
nuclear@14
|
243 }
|
nuclear@14
|
244
|
nuclear@14
|
245 coef->mcu_ctr = 0;
|
nuclear@14
|
246 coef->MCU_vert_offset = 0;
|
nuclear@14
|
247 }
|
nuclear@14
|
248
|
nuclear@14
|
249
|
nuclear@14
|
250 /*
|
nuclear@14
|
251 * Initialize for a processing pass.
|
nuclear@14
|
252 */
|
nuclear@14
|
253
|
nuclear@14
|
254 METHODDEF(void)
|
nuclear@14
|
255 start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
nuclear@14
|
256 {
|
nuclear@14
|
257 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
nuclear@14
|
258
|
nuclear@14
|
259 if (pass_mode != JBUF_CRANK_DEST)
|
nuclear@14
|
260 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
nuclear@14
|
261
|
nuclear@14
|
262 coef->iMCU_row_num = 0;
|
nuclear@14
|
263 start_iMCU_row(cinfo);
|
nuclear@14
|
264 }
|
nuclear@14
|
265
|
nuclear@14
|
266
|
nuclear@14
|
267 /*
|
nuclear@14
|
268 * Process some data.
|
nuclear@14
|
269 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
nuclear@14
|
270 * per call, ie, v_samp_factor block rows for each component in the scan.
|
nuclear@14
|
271 * The data is obtained from the virtual arrays and fed to the entropy coder.
|
nuclear@14
|
272 * Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
nuclear@14
|
273 *
|
nuclear@14
|
274 * NB: input_buf is ignored; it is likely to be a NULL pointer.
|
nuclear@14
|
275 */
|
nuclear@14
|
276
|
nuclear@14
|
277 METHODDEF(boolean)
|
nuclear@14
|
278 compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
nuclear@14
|
279 {
|
nuclear@14
|
280 my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
nuclear@14
|
281 JDIMENSION MCU_col_num; /* index of current MCU within row */
|
nuclear@14
|
282 JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
nuclear@14
|
283 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
nuclear@14
|
284 int blkn, ci, xindex, yindex, yoffset, blockcnt;
|
nuclear@14
|
285 JDIMENSION start_col;
|
nuclear@14
|
286 JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
nuclear@14
|
287 JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
|
nuclear@14
|
288 JBLOCKROW buffer_ptr;
|
nuclear@14
|
289 jpeg_component_info *compptr;
|
nuclear@14
|
290
|
nuclear@14
|
291 /* Align the virtual buffers for the components used in this scan. */
|
nuclear@14
|
292 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
nuclear@14
|
293 compptr = cinfo->cur_comp_info[ci];
|
nuclear@14
|
294 buffer[ci] = (*cinfo->mem->access_virt_barray)
|
nuclear@14
|
295 ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
|
nuclear@14
|
296 coef->iMCU_row_num * compptr->v_samp_factor,
|
nuclear@14
|
297 (JDIMENSION) compptr->v_samp_factor, FALSE);
|
nuclear@14
|
298 }
|
nuclear@14
|
299
|
nuclear@14
|
300 /* Loop to process one whole iMCU row */
|
nuclear@14
|
301 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
nuclear@14
|
302 yoffset++) {
|
nuclear@14
|
303 for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
nuclear@14
|
304 MCU_col_num++) {
|
nuclear@14
|
305 /* Construct list of pointers to DCT blocks belonging to this MCU */
|
nuclear@14
|
306 blkn = 0; /* index of current DCT block within MCU */
|
nuclear@14
|
307 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
nuclear@14
|
308 compptr = cinfo->cur_comp_info[ci];
|
nuclear@14
|
309 start_col = MCU_col_num * compptr->MCU_width;
|
nuclear@14
|
310 blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
|
nuclear@14
|
311 : compptr->last_col_width;
|
nuclear@14
|
312 for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
nuclear@14
|
313 if (coef->iMCU_row_num < last_iMCU_row ||
|
nuclear@14
|
314 yindex+yoffset < compptr->last_row_height) {
|
nuclear@14
|
315 /* Fill in pointers to real blocks in this row */
|
nuclear@14
|
316 buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
|
nuclear@14
|
317 for (xindex = 0; xindex < blockcnt; xindex++)
|
nuclear@14
|
318 MCU_buffer[blkn++] = buffer_ptr++;
|
nuclear@14
|
319 } else {
|
nuclear@14
|
320 /* At bottom of image, need a whole row of dummy blocks */
|
nuclear@14
|
321 xindex = 0;
|
nuclear@14
|
322 }
|
nuclear@14
|
323 /* Fill in any dummy blocks needed in this row.
|
nuclear@14
|
324 * Dummy blocks are filled in the same way as in jccoefct.c:
|
nuclear@14
|
325 * all zeroes in the AC entries, DC entries equal to previous
|
nuclear@14
|
326 * block's DC value. The init routine has already zeroed the
|
nuclear@14
|
327 * AC entries, so we need only set the DC entries correctly.
|
nuclear@14
|
328 */
|
nuclear@14
|
329 for (; xindex < compptr->MCU_width; xindex++) {
|
nuclear@14
|
330 MCU_buffer[blkn] = coef->dummy_buffer[blkn];
|
nuclear@14
|
331 MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0];
|
nuclear@14
|
332 blkn++;
|
nuclear@14
|
333 }
|
nuclear@14
|
334 }
|
nuclear@14
|
335 }
|
nuclear@14
|
336 /* Try to write the MCU. */
|
nuclear@14
|
337 if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) {
|
nuclear@14
|
338 /* Suspension forced; update state counters and exit */
|
nuclear@14
|
339 coef->MCU_vert_offset = yoffset;
|
nuclear@14
|
340 coef->mcu_ctr = MCU_col_num;
|
nuclear@14
|
341 return FALSE;
|
nuclear@14
|
342 }
|
nuclear@14
|
343 }
|
nuclear@14
|
344 /* Completed an MCU row, but perhaps not an iMCU row */
|
nuclear@14
|
345 coef->mcu_ctr = 0;
|
nuclear@14
|
346 }
|
nuclear@14
|
347 /* Completed the iMCU row, advance counters for next one */
|
nuclear@14
|
348 coef->iMCU_row_num++;
|
nuclear@14
|
349 start_iMCU_row(cinfo);
|
nuclear@14
|
350 return TRUE;
|
nuclear@14
|
351 }
|
nuclear@14
|
352
|
nuclear@14
|
353
|
nuclear@14
|
354 /*
|
nuclear@14
|
355 * Initialize coefficient buffer controller.
|
nuclear@14
|
356 *
|
nuclear@14
|
357 * Each passed coefficient array must be the right size for that
|
nuclear@14
|
358 * coefficient: width_in_blocks wide and height_in_blocks high,
|
nuclear@14
|
359 * with unitheight at least v_samp_factor.
|
nuclear@14
|
360 */
|
nuclear@14
|
361
|
nuclear@14
|
362 LOCAL(void)
|
nuclear@14
|
363 transencode_coef_controller (j_compress_ptr cinfo,
|
nuclear@14
|
364 jvirt_barray_ptr * coef_arrays)
|
nuclear@14
|
365 {
|
nuclear@14
|
366 my_coef_ptr coef;
|
nuclear@14
|
367 JBLOCKROW buffer;
|
nuclear@14
|
368 int i;
|
nuclear@14
|
369
|
nuclear@14
|
370 coef = (my_coef_ptr)
|
nuclear@14
|
371 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
nuclear@14
|
372 SIZEOF(my_coef_controller));
|
nuclear@14
|
373 cinfo->coef = (struct jpeg_c_coef_controller *) coef;
|
nuclear@14
|
374 coef->pub.start_pass = start_pass_coef;
|
nuclear@14
|
375 coef->pub.compress_data = compress_output;
|
nuclear@14
|
376
|
nuclear@14
|
377 /* Save pointer to virtual arrays */
|
nuclear@14
|
378 coef->whole_image = coef_arrays;
|
nuclear@14
|
379
|
nuclear@14
|
380 /* Allocate and pre-zero space for dummy DCT blocks. */
|
nuclear@14
|
381 buffer = (JBLOCKROW)
|
nuclear@14
|
382 (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
nuclear@14
|
383 C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
nuclear@14
|
384 jzero_far((void FAR *) buffer, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
nuclear@14
|
385 for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
|
nuclear@14
|
386 coef->dummy_buffer[i] = buffer + i;
|
nuclear@14
|
387 }
|
nuclear@14
|
388 }
|