rev |
line source |
nuclear@14
|
1 /*
|
nuclear@14
|
2 * jfdctint.c
|
nuclear@14
|
3 *
|
nuclear@14
|
4 * Copyright (C) 1991-1996, Thomas G. Lane.
|
nuclear@14
|
5 * This file is part of the Independent JPEG Group's software.
|
nuclear@14
|
6 * For conditions of distribution and use, see the accompanying README file.
|
nuclear@14
|
7 *
|
nuclear@14
|
8 * This file contains a slow-but-accurate integer implementation of the
|
nuclear@14
|
9 * forward DCT (Discrete Cosine Transform).
|
nuclear@14
|
10 *
|
nuclear@14
|
11 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
nuclear@14
|
12 * on each column. Direct algorithms are also available, but they are
|
nuclear@14
|
13 * much more complex and seem not to be any faster when reduced to code.
|
nuclear@14
|
14 *
|
nuclear@14
|
15 * This implementation is based on an algorithm described in
|
nuclear@14
|
16 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
|
nuclear@14
|
17 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
|
nuclear@14
|
18 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
|
nuclear@14
|
19 * The primary algorithm described there uses 11 multiplies and 29 adds.
|
nuclear@14
|
20 * We use their alternate method with 12 multiplies and 32 adds.
|
nuclear@14
|
21 * The advantage of this method is that no data path contains more than one
|
nuclear@14
|
22 * multiplication; this allows a very simple and accurate implementation in
|
nuclear@14
|
23 * scaled fixed-point arithmetic, with a minimal number of shifts.
|
nuclear@14
|
24 */
|
nuclear@14
|
25
|
nuclear@14
|
26 #define JPEG_INTERNALS
|
nuclear@14
|
27 #include "jinclude.h"
|
nuclear@14
|
28 #include "jpeglib.h"
|
nuclear@14
|
29 #include "jdct.h" /* Private declarations for DCT subsystem */
|
nuclear@14
|
30
|
nuclear@14
|
31 #ifdef DCT_ISLOW_SUPPORTED
|
nuclear@14
|
32
|
nuclear@14
|
33
|
nuclear@14
|
34 /*
|
nuclear@14
|
35 * This module is specialized to the case DCTSIZE = 8.
|
nuclear@14
|
36 */
|
nuclear@14
|
37
|
nuclear@14
|
38 #if DCTSIZE != 8
|
nuclear@14
|
39 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
nuclear@14
|
40 #endif
|
nuclear@14
|
41
|
nuclear@14
|
42
|
nuclear@14
|
43 /*
|
nuclear@14
|
44 * The poop on this scaling stuff is as follows:
|
nuclear@14
|
45 *
|
nuclear@14
|
46 * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
|
nuclear@14
|
47 * larger than the true DCT outputs. The final outputs are therefore
|
nuclear@14
|
48 * a factor of N larger than desired; since N=8 this can be cured by
|
nuclear@14
|
49 * a simple right shift at the end of the algorithm. The advantage of
|
nuclear@14
|
50 * this arrangement is that we save two multiplications per 1-D DCT,
|
nuclear@14
|
51 * because the y0 and y4 outputs need not be divided by sqrt(N).
|
nuclear@14
|
52 * In the IJG code, this factor of 8 is removed by the quantization step
|
nuclear@14
|
53 * (in jcdctmgr.c), NOT in this module.
|
nuclear@14
|
54 *
|
nuclear@14
|
55 * We have to do addition and subtraction of the integer inputs, which
|
nuclear@14
|
56 * is no problem, and multiplication by fractional constants, which is
|
nuclear@14
|
57 * a problem to do in integer arithmetic. We multiply all the constants
|
nuclear@14
|
58 * by CONST_SCALE and convert them to integer constants (thus retaining
|
nuclear@14
|
59 * CONST_BITS bits of precision in the constants). After doing a
|
nuclear@14
|
60 * multiplication we have to divide the product by CONST_SCALE, with proper
|
nuclear@14
|
61 * rounding, to produce the correct output. This division can be done
|
nuclear@14
|
62 * cheaply as a right shift of CONST_BITS bits. We postpone shifting
|
nuclear@14
|
63 * as long as possible so that partial sums can be added together with
|
nuclear@14
|
64 * full fractional precision.
|
nuclear@14
|
65 *
|
nuclear@14
|
66 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
|
nuclear@14
|
67 * they are represented to better-than-integral precision. These outputs
|
nuclear@14
|
68 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
|
nuclear@14
|
69 * with the recommended scaling. (For 12-bit sample data, the intermediate
|
nuclear@14
|
70 * array is INT32 anyway.)
|
nuclear@14
|
71 *
|
nuclear@14
|
72 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
|
nuclear@14
|
73 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
|
nuclear@14
|
74 * shows that the values given below are the most effective.
|
nuclear@14
|
75 */
|
nuclear@14
|
76
|
nuclear@14
|
77 #if BITS_IN_JSAMPLE == 8
|
nuclear@14
|
78 #define CONST_BITS 13
|
nuclear@14
|
79 #define PASS1_BITS 2
|
nuclear@14
|
80 #else
|
nuclear@14
|
81 #define CONST_BITS 13
|
nuclear@14
|
82 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
nuclear@14
|
83 #endif
|
nuclear@14
|
84
|
nuclear@14
|
85 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
nuclear@14
|
86 * causing a lot of useless floating-point operations at run time.
|
nuclear@14
|
87 * To get around this we use the following pre-calculated constants.
|
nuclear@14
|
88 * If you change CONST_BITS you may want to add appropriate values.
|
nuclear@14
|
89 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
nuclear@14
|
90 */
|
nuclear@14
|
91
|
nuclear@14
|
92 #if CONST_BITS == 13
|
nuclear@14
|
93 #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
|
nuclear@14
|
94 #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
|
nuclear@14
|
95 #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
|
nuclear@14
|
96 #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
|
nuclear@14
|
97 #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
|
nuclear@14
|
98 #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
|
nuclear@14
|
99 #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
|
nuclear@14
|
100 #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
|
nuclear@14
|
101 #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
|
nuclear@14
|
102 #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
|
nuclear@14
|
103 #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
|
nuclear@14
|
104 #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
|
nuclear@14
|
105 #else
|
nuclear@14
|
106 #define FIX_0_298631336 FIX(0.298631336)
|
nuclear@14
|
107 #define FIX_0_390180644 FIX(0.390180644)
|
nuclear@14
|
108 #define FIX_0_541196100 FIX(0.541196100)
|
nuclear@14
|
109 #define FIX_0_765366865 FIX(0.765366865)
|
nuclear@14
|
110 #define FIX_0_899976223 FIX(0.899976223)
|
nuclear@14
|
111 #define FIX_1_175875602 FIX(1.175875602)
|
nuclear@14
|
112 #define FIX_1_501321110 FIX(1.501321110)
|
nuclear@14
|
113 #define FIX_1_847759065 FIX(1.847759065)
|
nuclear@14
|
114 #define FIX_1_961570560 FIX(1.961570560)
|
nuclear@14
|
115 #define FIX_2_053119869 FIX(2.053119869)
|
nuclear@14
|
116 #define FIX_2_562915447 FIX(2.562915447)
|
nuclear@14
|
117 #define FIX_3_072711026 FIX(3.072711026)
|
nuclear@14
|
118 #endif
|
nuclear@14
|
119
|
nuclear@14
|
120
|
nuclear@14
|
121 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
nuclear@14
|
122 * For 8-bit samples with the recommended scaling, all the variable
|
nuclear@14
|
123 * and constant values involved are no more than 16 bits wide, so a
|
nuclear@14
|
124 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
|
nuclear@14
|
125 * For 12-bit samples, a full 32-bit multiplication will be needed.
|
nuclear@14
|
126 */
|
nuclear@14
|
127
|
nuclear@14
|
128 #if BITS_IN_JSAMPLE == 8
|
nuclear@14
|
129 #define MULTIPLY(var,const) MULTIPLY16C16(var,const)
|
nuclear@14
|
130 #else
|
nuclear@14
|
131 #define MULTIPLY(var,const) ((var) * (const))
|
nuclear@14
|
132 #endif
|
nuclear@14
|
133
|
nuclear@14
|
134
|
nuclear@14
|
135 /*
|
nuclear@14
|
136 * Perform the forward DCT on one block of samples.
|
nuclear@14
|
137 */
|
nuclear@14
|
138
|
nuclear@14
|
139 GLOBAL(void)
|
nuclear@14
|
140 jpeg_fdct_islow (DCTELEM * data)
|
nuclear@14
|
141 {
|
nuclear@14
|
142 INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
nuclear@14
|
143 INT32 tmp10, tmp11, tmp12, tmp13;
|
nuclear@14
|
144 INT32 z1, z2, z3, z4, z5;
|
nuclear@14
|
145 DCTELEM *dataptr;
|
nuclear@14
|
146 int ctr;
|
nuclear@14
|
147 SHIFT_TEMPS
|
nuclear@14
|
148
|
nuclear@14
|
149 /* Pass 1: process rows. */
|
nuclear@14
|
150 /* Note results are scaled up by sqrt(8) compared to a true DCT; */
|
nuclear@14
|
151 /* furthermore, we scale the results by 2**PASS1_BITS. */
|
nuclear@14
|
152
|
nuclear@14
|
153 dataptr = data;
|
nuclear@14
|
154 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
nuclear@14
|
155 tmp0 = dataptr[0] + dataptr[7];
|
nuclear@14
|
156 tmp7 = dataptr[0] - dataptr[7];
|
nuclear@14
|
157 tmp1 = dataptr[1] + dataptr[6];
|
nuclear@14
|
158 tmp6 = dataptr[1] - dataptr[6];
|
nuclear@14
|
159 tmp2 = dataptr[2] + dataptr[5];
|
nuclear@14
|
160 tmp5 = dataptr[2] - dataptr[5];
|
nuclear@14
|
161 tmp3 = dataptr[3] + dataptr[4];
|
nuclear@14
|
162 tmp4 = dataptr[3] - dataptr[4];
|
nuclear@14
|
163
|
nuclear@14
|
164 /* Even part per LL&M figure 1 --- note that published figure is faulty;
|
nuclear@14
|
165 * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
|
nuclear@14
|
166 */
|
nuclear@14
|
167
|
nuclear@14
|
168 tmp10 = tmp0 + tmp3;
|
nuclear@14
|
169 tmp13 = tmp0 - tmp3;
|
nuclear@14
|
170 tmp11 = tmp1 + tmp2;
|
nuclear@14
|
171 tmp12 = tmp1 - tmp2;
|
nuclear@14
|
172
|
nuclear@14
|
173 dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
|
nuclear@14
|
174 dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
|
nuclear@14
|
175
|
nuclear@14
|
176 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
|
nuclear@14
|
177 dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
|
nuclear@14
|
178 CONST_BITS-PASS1_BITS);
|
nuclear@14
|
179 dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
|
nuclear@14
|
180 CONST_BITS-PASS1_BITS);
|
nuclear@14
|
181
|
nuclear@14
|
182 /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
|
nuclear@14
|
183 * cK represents cos(K*pi/16).
|
nuclear@14
|
184 * i0..i3 in the paper are tmp4..tmp7 here.
|
nuclear@14
|
185 */
|
nuclear@14
|
186
|
nuclear@14
|
187 z1 = tmp4 + tmp7;
|
nuclear@14
|
188 z2 = tmp5 + tmp6;
|
nuclear@14
|
189 z3 = tmp4 + tmp6;
|
nuclear@14
|
190 z4 = tmp5 + tmp7;
|
nuclear@14
|
191 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
|
nuclear@14
|
192
|
nuclear@14
|
193 tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
|
nuclear@14
|
194 tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
|
nuclear@14
|
195 tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
|
nuclear@14
|
196 tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
|
nuclear@14
|
197 z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
|
nuclear@14
|
198 z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
|
nuclear@14
|
199 z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
|
nuclear@14
|
200 z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
|
nuclear@14
|
201
|
nuclear@14
|
202 z3 += z5;
|
nuclear@14
|
203 z4 += z5;
|
nuclear@14
|
204
|
nuclear@14
|
205 dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
|
nuclear@14
|
206 dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
|
nuclear@14
|
207 dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
|
nuclear@14
|
208 dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
|
nuclear@14
|
209
|
nuclear@14
|
210 dataptr += DCTSIZE; /* advance pointer to next row */
|
nuclear@14
|
211 }
|
nuclear@14
|
212
|
nuclear@14
|
213 /* Pass 2: process columns.
|
nuclear@14
|
214 * We remove the PASS1_BITS scaling, but leave the results scaled up
|
nuclear@14
|
215 * by an overall factor of 8.
|
nuclear@14
|
216 */
|
nuclear@14
|
217
|
nuclear@14
|
218 dataptr = data;
|
nuclear@14
|
219 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
nuclear@14
|
220 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
nuclear@14
|
221 tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
nuclear@14
|
222 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
nuclear@14
|
223 tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
nuclear@14
|
224 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
nuclear@14
|
225 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
nuclear@14
|
226 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
nuclear@14
|
227 tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
nuclear@14
|
228
|
nuclear@14
|
229 /* Even part per LL&M figure 1 --- note that published figure is faulty;
|
nuclear@14
|
230 * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
|
nuclear@14
|
231 */
|
nuclear@14
|
232
|
nuclear@14
|
233 tmp10 = tmp0 + tmp3;
|
nuclear@14
|
234 tmp13 = tmp0 - tmp3;
|
nuclear@14
|
235 tmp11 = tmp1 + tmp2;
|
nuclear@14
|
236 tmp12 = tmp1 - tmp2;
|
nuclear@14
|
237
|
nuclear@14
|
238 dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
|
nuclear@14
|
239 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
|
nuclear@14
|
240
|
nuclear@14
|
241 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
|
nuclear@14
|
242 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
|
nuclear@14
|
243 CONST_BITS+PASS1_BITS);
|
nuclear@14
|
244 dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
|
nuclear@14
|
245 CONST_BITS+PASS1_BITS);
|
nuclear@14
|
246
|
nuclear@14
|
247 /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
|
nuclear@14
|
248 * cK represents cos(K*pi/16).
|
nuclear@14
|
249 * i0..i3 in the paper are tmp4..tmp7 here.
|
nuclear@14
|
250 */
|
nuclear@14
|
251
|
nuclear@14
|
252 z1 = tmp4 + tmp7;
|
nuclear@14
|
253 z2 = tmp5 + tmp6;
|
nuclear@14
|
254 z3 = tmp4 + tmp6;
|
nuclear@14
|
255 z4 = tmp5 + tmp7;
|
nuclear@14
|
256 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
|
nuclear@14
|
257
|
nuclear@14
|
258 tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
|
nuclear@14
|
259 tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
|
nuclear@14
|
260 tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
|
nuclear@14
|
261 tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
|
nuclear@14
|
262 z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
|
nuclear@14
|
263 z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
|
nuclear@14
|
264 z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
|
nuclear@14
|
265 z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
|
nuclear@14
|
266
|
nuclear@14
|
267 z3 += z5;
|
nuclear@14
|
268 z4 += z5;
|
nuclear@14
|
269
|
nuclear@14
|
270 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
|
nuclear@14
|
271 CONST_BITS+PASS1_BITS);
|
nuclear@14
|
272 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
|
nuclear@14
|
273 CONST_BITS+PASS1_BITS);
|
nuclear@14
|
274 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
|
nuclear@14
|
275 CONST_BITS+PASS1_BITS);
|
nuclear@14
|
276 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
|
nuclear@14
|
277 CONST_BITS+PASS1_BITS);
|
nuclear@14
|
278
|
nuclear@14
|
279 dataptr++; /* advance pointer to next column */
|
nuclear@14
|
280 }
|
nuclear@14
|
281 }
|
nuclear@14
|
282
|
nuclear@14
|
283 #endif /* DCT_ISLOW_SUPPORTED */
|