Pointers Explained

John Tsiombikas

Abstract

Over the last few years I have watched various peo-
ple who tried to take their first steps with C or
C++. I even took the responsibility of teaching
the subject on various occasions. From these expe-
riences I concluded that one of the concepts that
novices find most difficult to understand, is point-
ers. For this reason I decided to write this article,
explaining in simple terms the use of pointers in C
and C++, to help people grasp this powerful con-
cept, which is central to these languages.

1 Introduction

The C programming language is designed in such
a way, as to provide full control of the underlying
machine to the programmer. This design decision,
makes C a very powerful programming language,
able to be used for tasks that simply cannot be
done with most other high level languages.

One of the most powerful tools that C provides
is the ability to directly access and manipulate
the memory of the computer, through a construct
called a pointer. Note that although I am refer-
ring to C, everything applies to C++ as well, since
pointers are exactly the same in both languages.

2 Memory and Variables

First let’s review the way memory is organized in
a computer.

The memory can be thought of as a big linear
array of bytes, each one identified by an address,
which is essentially the index in that big array. The
only difference is that address 0, as far as C is con-
cerned, is not a valid memory location. It is im-
portant to understand that the actual address of
any byte in memory is just an integer, and nothing

more. 1

The CPU can generally access (read or write) any
byte of the main memory, by sending its address to
the memory controller in order to “select it” before
writing or reading the actual data.

Address

0

Memory Content

OO WN|EF

23z

Figure 1: memory organization in a system with
32bit addressing

When we create a variable in a C program, for
example: int x, the compiler sets aside a block of
contiguous memory locations, big enough to fit this
variable, and keeps an internal tag that associates
the variable name z with the address of the first
byte allocated to it. So when we access that vari-
able like this: z = 10, the compiler knows where

ITechnically, this is not specified by the C standard, and
in fact some old 16bit systems used a complex addressing
scheme involving segments and offsets. But this is beyond
the scope of this introductory document, and in general of
no interest to anyone writing C for modern computers, or
even for those old computers under most circuimstances.

that variable is located in memory, and it simply
changes the value there to 10.

2.1 The Size of a Variable

We can easily determine how much space does a
variable occupy, with the sizeof operator. For ex-
ample, on my computer, sizeof = gives me the value
4. Which means that an integer needs 4 consecu-
tive bytes in memory to be stored. If the address
of x would be 24, then the actual memory locations
used by x would be identified by the addresses: 24,
25, 26, and 27.

2.2 The Address of a Variable

C provides a mechanism to determine the address
of a specific variable. Remember that if a variable
spans multiple bytes, its address is the first byte it
occupies.

This is done with a special operator that is called
the address-of operator, and is represented by the
symbol ‘&’. To clearly illustrate the use of the
address-of operator, let’s see a minimal code frag-
ment that uses it to print the address of a variable.

int a;
printf ("The address is: %p\n", &a);

In the example above, we used the ‘%p’ format
specifier which tells printf that it is printing an ad-
dress. In C++ the same thing can also be done
with the iostream mechanism, like this:

int a;
cout << "address of a is:
<< endl;

" << &a

C++ does not need any format specifiers, it de-
tects the type of the variable and automatically
uses the correct mechanism to print it.

Addresses are usually printed in hexadecimal, as
you will see if you try this example, since it is more
compact, and easier to read for large numbers (and
addresses tend to get pretty large).

As we saw, we can get the address of a variable
easily, but where do we store it? I mentioned ear-
lier that addresses are actually just integers, so it
would seem a good idea to use an int variable for
that purpose. Indeed that is actually what we do
when we program directly in assembly. C however,

is a high level language which provides us with fa-
cilities to manipulate these addresses in a more in-
tuitive way. And in order to be able to do that,
the compiler must know that it deals with an ad-
dress of some variable, and also exactly what is the
type of the variable stored in that address. Thus it
makes sense to have a specialized type to hold such
addresses.

3 Pointers

Pointers are just a special kind of variables that
can hold the address of another variable, nothing
more, nothing less. There are some new operators
that we can use with pointers, and some of the
existing operators change their behaviour slightly
when acting on pointers, but all in all nothing out
of the ordinary.

3.1 Pointer Declaration

When we declare a pointer, we have to specify the
type of the variable it will point to. Or to put it
differently, the type of the variable whose address
it’s going to hold. The syntax of the declaration is
very simple, we just write the type of the variable
that the pointer points to, followed by a an asterisk,
followed by the name of the pointer itself. See some
examples of pointer declarations below:

int *pl;

float *p2;
unsigned int *p3;
char *p4;

void *pb5;

Here p1 is a pointer that can point to an nt
variable, p2 can point to a float, p3 to an unsigned
int, and p4 to a char. Finally p5 is a pointer that
can point to anything. These pointers are called
void pointers, and there are some restrictions on
what we can do with them.

3.2 Using Pointers

As we said, pointers hold addresses. So it follows
that we can assign to a pointer, the address of a
variable as obtained by the ‘&’ operator. Let’s see
a small sample and explain what happens.

int a = 10;

int *ptr = &a;

Here we first declare an integer named ¢ and ini-
tialize it to the value 10. Then we create a pointer
to int named ptr and assign the address of a to it.
This is called, “making the pointer ptr point to a.”
If we depict the first bytes of the memory of that
program graphicaly, it will look like Figure 2.

Address Memory Content

10 -

o

o 2

234

oO0~WNF O

Figure 2: Memory diagram

A very common operation we can do with a
pointer is what is called indirection, which is a way
to access the contents of the memory that it points
to. That can be done with the indirection operator,
that is again represented by the asterisk symbol.
Do not confuse this operator with the use of the
same asterisk symbol in the delclaration of point-
ers, they are not the same thing.

So if we’d like to access the contents of the mem-
ory where ptr points to, we would do it like this:
*ptr. Let’s see a small code fragment that illus-
trates pointer indirections.

int a = 10;
int *ptr = &a;

printf("a contains the value %d\n", a);
printf ("ptr points to %p\n", ptr);
printf("there lies the value %d\n", *ptr);

*ptr = 25;
printf("now a contains the value %d\n", a);

Here we first declare a and ptr just like before.
Then we print a (which is 10), followed by ptr, i.e,
the contents of the variable ptr which is an address;
the address of a to be precise. And finally we print
*ptr, which is the value of the memory location
where ptr points to (again 10, since it points to the
location occupied by the variable ¢ in memory).
Finally we go on and change the contents of the
location where ptr points to by writing *ptr = 25,
which means assign the value 25 to wherever ptr
points to.

Notice that when we do that, in essence we mod-
ify the value of a. That should not be surprising,
as we have seen that ptr holds the address of a,
and changing the contents of the memory at that
address obviously affects the value of a.

Below is the output of the program, if the vari-
ables were placed as seen in figure 2.

a contains the value 10
ptr points to 2

there lies the value 10
now a contains the value 25

One limitation of void pointers, i.e. pointers that
can point to any type, is that they cannot be deref-
erenced. That makes sense, if we consider the fact
that each variable type takes different amount of
memory. On a 32bit computer for example usually
an int needs 4 bytes, while a short 2 bytes. So
in order to read the actual value stored there, the
compiler has to know how many consecutive mem-
ory locations to read in order to get the full value.

3.3 Pointer Arithmetic

Another very useful thing we can do with pointers
is to perform arithmetic operations on them. This
might be obvious to the careful reader, since we
said that pointers are just integers. However, there
are a few small differences on pointer arithmetic
that make their use even more intuitive and easy.
Try the following code:

char *cptr = (char*)2;

printf ("cptr before: %p ", cptr);
Ccptr++;

printf("and after: %p\n", cptr);

We declare a pointer named cptr and assign the
address 2 to it. We print the contents of the pointer
(i.e. the address 2), increment it, and print again.
Sure enough the first time it prints 2 and then 3,
and that was exactly what we expected. However
try this one as well:

int *iptr = (int*)2;

printf ("iptr before: %p ", iptr);
iptr++;

printf("and after: p\n", iptr);

Now the output, on my computer, is
iptr before: 2 and after: 6! Why does
this pointer point to the address 6 after we
incremented it by one and not to 3 as the previous
pointer? The answer lies with what we said about
the size of variables.

An int is 4 bytes on my computer. This means
that if we have an int at the address 2, then that
int occupies the memory locations 2, 3, 4 and 5. So
in order to access to the next int we have to look
at the address 6, 7, 8 and 9. Thus when we add
one to a pointer, it is not the same as adding one
to any integer, it means give me a pointer to the
next variable which for variables of type int, in this
case, is 4 bytes ahead.

The reason that in the first example with the char
pointer, the actual address after incrementing, was
one more than the previous address is because the
size of char is exactly 1. So the next char can indeed
be found on the next address.

Another limitation of void pointers, is that we
cannot perform arithmetic on them, since the com-
piler cannot know how many bytes ahaid is the next
variable located. So void pointers can only be used
to keep addresses that we have to convert later on
to a specific pointer type, before using them.

3.4 Arrays and Pointers

There is a strong connection between arrays and
pointers. So strong in fact, that most of the time
we can treat them as the same thing. The name of
an array can be considered just as a pointer to the
beginning of a memory block as big as the array.
So for example, making a pointer point to the be-
gining of an array is done in exactly the same way
as assigning the contents of a pointer to another:

short *ptr;

short array[10];
ptr = array;

and then we can access the contents of the array
through the pointer as if the pointer itself was that
array. For example this: ptr/2] = 25 is perfectly
legal. Furthermore, we can treat the array itself as
a pointer, for example, *array = 4 is equivalent to
arrayf0] = 4. In general *(array+n) is equivalent
to array/n].

The only difference between an array, and a
pointer to the begining of an array, is that the com-
piler keeps some extra information for the arrays,
to keep track of their storage requirements. For
example if we get the size of both an array and
a pointer using the sizeof operator; sizeof ptr will
give us how much space does the pointer itself oc-
cupies (4 on my computer), while sizeof array will
give us, the amount of space occupied by the whole
array (on my computer 20, 10 elements of 2 bytes
each).

4 Dynamic Memory Alloca-
tion

An important use of pointers, is to hold addresses
of memory locations that do not have a specific
compile-time variable name, but are allocated dy-
namically while the program runs. In order to do
that, we have to call the malloc function, which
allocates the requested amount of memory, and re-
turns a pointer to that memory. Of course, to deal-
locate that block of memory, we have to call free,
passing the pointer as an argument to that func-
tion. For example see the following code fragment,
in which an array of 10 integers is allocated dynam-
ically, and then freed.

int nelem = 10;

int *arr = malloc(nelem * sizeof(int));
/* ... use arr as a regular array .. */
free(arr);

In this example, the expression nelem * sizeof(int)
calculates the amount of bytes we need to allocate
for the array, by multiplying the number of ele-
ments, to the size of each element (i.e. the size of
one integer).

Note that a slightly preferable way to find the
size of each element would be sizeof *arr, because in

the first example, if we decide to change the type of
elements in the array, we would have to also change
the sizeof.

5 Function Pointers

Executable code (machine instructions), in the Von
Neumann architecture which is tha basis of all com-
puters, are also stored in memory, like data. Thus,
we can obtain the address of a C function, store it
in a function pointer, and then call the function in-
directly through that pointer. However, the manip-
ulation of function pointers is limited to assignment
and indirection; we cannot do arithmetic on func-
tion pointers, since there is no ordering imposed on
functions. The following example illustrates how to
create and use function pointers.

double (*foo) (double);

foo = sin;

printf("sine of 0 is: %f\n", f00(0.0));
foo = cos;

printf ("cosine of 0 is: %f\n", f00(0.0));

First we create a pointer that can point to functions
accepting a double as an argument and returning
double, named foo. Then we make foo point to
the standard library function sin, and proceed to
call it through the foo pointer, to print the sine of
0. Finally, we change foo to point to cos, and call
it again in exactly the same manner, to print the
cosine of 0.

